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In this study, a spectroscopic study on Cu:Al co-sputtering was investigated in detail. The 
study includes the effect of varying vacuum pressures and applied voltages on plasma 
parameters to optimize these operational parameters that lead to enhanced sputtering 
efficiency. An important finding is the optimal Ar pressure at 0.3 mbar, and the electrical 
discharge was enhanced directly with the applied voltage. The highest emission intensity 
emitted from the sputtered species, electron temperature (Te), and electron number density 
(ne) occurred at the same 0.3 vacuum pressure. They demonstrated a technique of 
observation of the plasma in the Cu: Al co-spraying system and their effect on the sputtering 
process. 
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1. Introduction 

Among the various spectroscopic methods, 

optical emission spectroscopy (OES) is the most 

common for analyzing plasma properties [1]. OES 

includes analyzing the electromagnetic radiation 

emitted by excited atoms and ions inside the plasma 

[2,3], which enables the understanding of plasma 

properties related to the sputtering process and thin 

film deposition [4]. 

The study of plasma properties through 

spectroscopic analysis is essential in sputtering 

systems for nanoparticle generation [5] and thin film 

deposition because the plasma components and their 

kinetic properties are responsible for the sputtering 

process [6,7]. Plasma properties play an essential role 

in the sputtering process because they are directly 

related to the dynamics of different species [8], which 

affect the properties of the deposited thin films [9]. 

The working parameters of the direct current 

sputtering system affect the energy of the ions 

bombarding the target materials, cause significant 

differences in plasma properties, and significantly 

affect the formation and properties of the deposited 

film [10,11]. Through spectroscopic study, the 

influence of operating conditions such as vacuum 

pressure and applied voltage on the plasma behavior 

can be distinguished, which is related to the elemental 

distribution, species concentration, energy 

distribution [12], and ionization degree [13,14]. 

These investigations lead to improved deposition of 

thin films with the desired properties for specific 

applications, from microelectronics to advanced 

coatings [15]. 

The co-sputtering process, which involves the 

simultaneous deposition of two materials, increases 

the complexity of plasma dynamics [16,17]. The 

spectroscopic investigation of plasma emission 

determines the critical interactions within the plasma 

and the proportions of materials sputtered from the 

two electrodes in the co-sputtering system under 

different deposition conditions [18]. Emission 

spectroscopy provides information about the 

composition of plasma at different deposition 

parameters, which determines the probability of 

interaction between atoms and ions using information 

about their energies and number densities [19,20]. 

This work aims to study the plasma properties of 

a direct current co-sputtering system for copper and 

aluminum and to determine their variations under 

different Argon gas pressures and applied voltages to 

optimize the sputtering process. The study of plasma 

properties involves the variation in electron number 

density and temperature with vacuum pressure and 

applied voltage using optical emission spectroscopy 

(OES). In this work, the effect of the operational 

parameters of the co-sputtering system on the plasma 

parameters and the intensity of the emitted spectral 

lines of the two sputtered metals was studied, and 

their relationship with the sputtering efficiency of 

both metals and the deposition of thin films was 

investigated. 

 

2. Experimental Setup 

The co-sputtering system contains a cylindrical 

glass chamber with dimensions of 40 cm in diameter 

and 40 cm in height, as schematically shown in Fig. 

(1). The chamber was evacuated using Edwards 

rotary and diffusion vacuum pumps to achieve a base 

pressure of 1.0×10-6 mbar to ensure that the chamber 

was free of contaminants. Then, the introduction of 

argon (Ar) gas was controlled using a needle valve 

while the vacuum system was still running to reach 

the required vacuum level for the study. The distance 

between each cathode and the anode was fixed at 8 

cm throughout the experiments. Two targets of Al and 

Cu, each with a diameter of 5 cm, were used, 

equipped with magnetrons behind the targets. These 

two targets were directed downward at 45° toward the 
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center of the anode. The working pressure at different 

operating levels (0.05, 0.1, 0.2, 0.3, and 0.4 mbar, and 

the voltages applied to both targets were varied at 

400, 600, 800, 1000, and 1200 V to explore the effect 

of changing the spray pressure and applied voltage on 

the plasma properties. A Thorlabs CCS 100/M 

spectrometer with an optical fiber directed to the 

plasma glow point between the two targets was used 

to analyze the emission spectra of the plasma plume 

under different operating conditions. This 

spectrometer operates within the wavelength range of 

200-1000 nm. 

 

 
Fig (1) A scheme of the co-sputtering system in the laboratory 

of plasma physics at the Department of Physic, College of 

Science, University of Baghdad 

 

3. Results and Discussions 

Figure (2) depicts the spectroscopic patterns of 

plasma emission from the co-sputtering process of 

copper and aluminum targets using 1200V and 

varying operational gas pressures, ranging from 0.05 

to 0.4 mbar. The observed emission lines were 

matched with the reference lines of electronic 

transitions in the atomic and ionic form of aluminum 

(Al), copper (Cu), and argon (Ar) from the database 

of the National Institute of Standards and Technology 

(NIST) [21]. The difference in intensity for different 

lines exhibited by each emission pattern is attributed 

to the variations in transition probabilities and the 

statistical weights associated with each transition. It 

also varies according to temperature according to 

Boltzmann distribution [22]. 

The emission intensity corresponding to atomic 

species is more evident than ionic ones, indicating the 

induced plasma's relatively low ionization levels [23]. 

The higher intensity corresponding to argon (Ar) lines 

than the others is attributed to the higher argon 

concentration compared to the relatively minor 

presence of sputtered metal atoms in the gas phase. 

Additionally, increased emission line intensity was 

observed with increasing working pressure up to 0.3 

mbar. Meanwhile, intensity decreased as the pressure 

was further increased to 0.4 mbar. At lower pressures, 

a limited number of inelastic collisions occur between 

the highly energetic electrons and the heavy species 

of atoms and ions, resulting in a lower emission 

intensity due to the low number of excitation 

collisions. As the working pressure is increased to an 

intermediate range of 0.3 mbar, a notable 

enhancement in emission line intensity was observed, 

which can be attributed to increasing cross-sectional 

area for electron-atom excitation collisions [24,25]. 

An increase in the excitation probability causes more 

photons to be emitted, so an increase in the emission 

intensity is observed [26]. However, line intensity 

was reduced with the operational pressure of 0.4 

mbar. Increasing pressure to a higher level intensifies 

the collisional interactions between electrons and the 

background gas molecules. The heightened collision 

causes them to lose energy before reaching the 

threshold required for excitation or ionization 

collisions. Consequently, the emission intensity 

experiences a decline, effectively reflecting the 

competitive nature between excitation collisions and 

other collisions [27]. 

 

 
Fig. (2) Emitted spectra from Cu:Al co-sputtering system at 

1200V applied voltage and different operational vacuum 

pressures in Ar 

 

Figure (3) presents spectroscopic plasma emission 

patterns under an operational vacuum pressure of 0.3 

mbar, employing various applied voltages for both 

targets. The emission lines observed in the spectrum 

were matched with standard lines corresponding to 

electronic transitions. 

It is important to note that the emission intensity 

for atomic species notably exceeds that of ionic 

species due to the relatively lower ionization degree. 

The intensity of Ar emissions is higher than for other 

species.  

The emission line intensity shows an evident 

growth as the DC voltage increased from 400 to 

1200V for both targets. This increase in emission 

intensity can be attributed to more acceleration of 

charged particles by electric field. With electrons 

gaining higher energies, inelastic collisions with 

neutral atoms and ions increase. These collisions 

promote excitation and ionization, causing more 
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species to populate higher energy states, which cause 

higher emission line intensities. 

 

 
Fig. (3) Emitted spectra during co-sputtering of Cu:Al at 0.3 

mbar vacuum pressures in Ar using different applied voltages 

 

Additionally, it's important to note that the 

intensities of different emission lines increase in 

various ratios. According to the Boltzmann 

distribution, higher temperatures lead to a more 

population process into higher energy states. Thus, 

emission lines associated with transitions from higher 

energy levels have more intensity [28]. 

Figure (4) illustrates the variations in emitted line 

intensity of the sputtered metal atoms of Al I, 309.27, 

and Cu I, 324.75 intensity with working pressure and 

the applied voltage. The line intensity corresponding 

to the sputtered atoms indicates the sputtering 

efficiency. The higher intensity of these emission 

lines appeared at a vacuum pressure of 0.3 mbar, 

which indicates that this specific pressure level is 

favorable to optimal sputtering efficiency. 

Furthermore, it illustrates that as the applied voltage 

is increased, there is a corresponding increase in the 

intensity of the sputtered metals. This observation 

indicates that higher applied voltages enhance the 

sputtering process, which is attributed to the more 

energy available, resulting in more intense emission 

lines for both sputtering gas and sputtered atoms from 

the targets. However, in practice, operators of 

sputtering systems must carefully consider the 

optimal voltage settings by balancing the enhanced 

sputtering rate with the thin film quality and 

adherence to substrates [29]. 

Electron temperature (Te) was determined using 

the Boltzmann-Plot method, considering variations in 

pressure and applied voltage based on emission lines 

from the Ar I species. The relationship between Te 

and these emission lines relied on examining the 

linear correlation between the natural logarithm of the 

product Ln (λji Iji/hcAji. gj) and the upper-level energy 

(Ej). The high R2 values in figures (5) and (6), 

indicating consistency and excellent line fitting, 

validate the precision of this approach in assessing Te, 

which contributes to a comprehensive understanding 

of plasma conditions within the sputtering system 

under different experimental parameters. 

 

 
(a) 

 
(b) 

Fig. (4) Variation of Al I, 309.27 and Cu I, 324.75 intensity (a)  

with vacuum pressure at a constant applied voltage of 1200 V 

and  (b) with applied voltage at a constant vacuum pressure of 

0.3 mbar 
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Fig. (5) Boltzmann-plot for Ar-I emission lines at different 

working pressures 

 

Figure (7) presents the Lorentzian fitting applied 

to the Ar I (763.51 nm) emission lines observed under 

varying working pressures within an argon gas 

environment. As the gas pressure increases, the line 

becomes more broadening, peaking at 0.3 mbar and 

narrowing as the pressure is further raised to 0.4 

mbar. 

The increase in line broadening is mainly 

attributed to the influence of the increasing electron 

number density within the plasma (compared with 

other broadening processes, which can be neglected), 

correlated to the alterations in working pressure. 

Increasing pressure from 0.05 to 0.3 mbar causes 

growth in the electron number density due to the 

greater abundance of gas atoms available for 

ionization. The increase in electron density causes 

more frequent inelastic electron-neutral collision 

events [30,31]. However, as the working pressure is 

increased beyond 0.3 mbar, the available gas atoms 

for ionization become even more plentiful, leading to 

more electron-neutral collisions before electrons can 

acquire sufficient energy for ionization. Instead, these 

electrons expend their energy in other types of 

collisions. This results in a decrease in the line 

broadening observed at 0.4 mbar gas pressure. 

 

 

 

 

 
Fig. (6) Boltzmann-plot for Ar-I emission lines using different 

applied voltages at 0.3 mbar vacuum pressure 

 

Figure (8) illustrates the Lorentzian fitting for the 

Ar I (763.51 nm) emission lines observed under 

varying applied voltages at a fixed working pressure 

of 0.3 mbar argon gas. The applied voltage range 
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from 600 to 1200V increases the emission lines' 

broadening. This broadening indicates a rise in 

electron number density within the plasma, attributed 

to the increased electron-neutral ionization collisions 

resulting from the increased energy gained by the free 

electrons due to the raised electric field. 

 

 

 

 

 

 
Fig. (7) Lorentzian fitting for the 763.51 nm Ar-I emission at 

different working pressures 

 

The variation of Te and ne with the working 

pressure in the Argon environment observed within 

the sputtering system under different conditions, with 

varying vacuum pressures and applied voltages, were 

shown in figures (9) and (10). Te and ne exhibit an 

increase with rising pressure, reaching their peak 

values at a vacuum pressure of 0.3 mbar. Beyond this 

point, at 0.4 mbar pressure, Te and ne start to reduce. 

Higher pressures may increase collisions among gas 

particles, elevating the electron temperature [32]. 

This phenomenon explains why Te increases with 

rising pressure, reaching its peak at an optimal 

pressure. 

Further pressure increases beyond this point cause 

a reduction in electron temperature due to increased 

collisions and energy transfer from electrons to heavy 

atoms [33]. This optimal pressure for our setup 

configurations at 0.3 mbar pressure is linked to the 

efficiency of the sputtering process with the optimal 

plasma conditions. Both Te and ne decreased with 

increasing the working pressure to 0.4 mbar. 

Furthermore, higher voltages provide additional 

energy to the electrons, supporting the ionization 

process and increasing both Te and ne. These two 

fundamental characteristics of the plasma illustrate 

the behavior of the sputtering process trend and 

determine the optimal enhancing sputtering point 

[34]. 

Table (1) lists the plasma parameters for our co-

sputtering configuration under different working 

conditions in argon at varying vacuum pressures and 

applied voltages. It includes electron temperature 

(Te), electron number density (ne), plasma frequency 

(fp), Debye length (λD), and Debye number (ND). The 

plasma parameters help characterize the behavior of 

the plasma within the system at varying conditions 

[35]. These parameters play a significant role in 

indicating sputtering efficiency. The variations in Te 

and ne are linked and related to other plasma 

parameters, reflecting the overall state of the plasma 

[36]. The highest values of Te and ne are observed at 

the optimal pressure of 0.3 mbar, while they tend to 

increase with increasing the applied voltage. 
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Fig. (8) Lorentzian fitting for the 763.51 nm Ar-I emission 

using different applied voltages at 0.3 mbar vacuum pressure 

 

 
Fig. (9) Variation of electron number density and temperature 

with vacuum pressure 

 

 
Fig. (10) Variation of electron number density and electron 

temperature with sputtering applied voltage at 0.3 mbar 

vacuum pressure 

 

4. Conclusions 

The spectroscopic diagnostics of Cu:Al plasma 

produced by dc magnetron discharge at different 

working conditions revealed that the optimal gas 

pressure for maximum line intensity was determined 

to be 0.3 mbar. In addition, a direct relationship 

between the applied voltage and emission line 

intensity was observed, with higher applied voltages 

resulting in increased line intensity corresponding to 

the sputtered species. The highest electron 

temperature and electron number density were 

recorded at 0.3 mbar, and both parameters increased 

with the applied voltage. These results provide 

precise quantitative data on how gas pressure and 

applied voltage influence the plasma parameters, 

aiding in the optimization of the sputtering process. 
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Table (1) Plasma parameters for the co-sputtering DC discharge in Ar at different working pressures and applied voltages 

 

P (mbar) V (V) Te (eV) FWHM (nm) ne×1017 (cm-3) fp ×1012 (Hz)  λD ×10-6 (cm) ND 

0.05 

1200 

1.090 1.800 12.162 9.903 7.034 1773 

0.10 1.562 1.800 12.162 9.903 8.421 3042 

0.20 1.830 1.900 12.838 10.175 8.871 3755 

0.30 2.001 2.000 13.514 10.439 9.040 4182 

0.40 1.604 1.900 12.838 10.175 8.305 3080 

0.3 

600 0.911 1.700 11.486 9.624 6.616 1393 

800 1.298 1.800 12.162 9.903 7.675 2303 

1000 1.673 1.900 12.838 10.175 8.481 3280 

1200 2.001 2.000 13.514 10.439 9.040 4182 

 
 


