IRAQI JOURNAL OF APPLIED PHYSICS

The Iraqi Journal of Applied Physics (IJAP) is a peer reviewed journal of high quality devoted to the publication of original research papers from applied physics and their broad range of applications. IJAP publishes quality original research papers, comprehensive review articles, survey articles, book reviews, dissertation abstracts in physics and its applications in the broadest sense. It is intended that the journal may act as an interdisciplinary forum for Physics and its applications. Innovative applications and material that brings together diverse areas of Physics are particularly welcome. Review articles in selected areas are published from time to time. It aims to disseminate knowledge; provide a learned reference in the field; and establish channels of communication between academic and research experts, policy makers and executives in industry, commerce and investment institutions. IJAP is a quarterly specialized periodical dedicated to publishing original papers, letters and reviews in: Applied & Nonlinear Optics, Applied Mechanics & Thermodynamics, Digital & Optical Communications, Electronic Materials & Devices, Laser Physics & Applications, Plasma Physics & Applications, Quantum Physics & Spectroscopy, Semiconductors & Optoelectronics, Solid State Physics & Applications, Alternative and Renewable Energy, and Computers and Networks.

ISSN (Print): 1813-2065, ISSN (Online): 2309-1673, ISSN (Letters): 1999-656X

EDITORIAL BOARD

Raad A. KHAMIS Walid K. HAMOUDI	Asst. Professor Professor	Editor-in-Chief Member	Plasma Physics Laser Physics	IRAQ IRAQ
Dayah N. RAOUF	Asst. Professor	Member	Laser and Optics	IRAQ
Raid A. ISMAIL	Professor	Member	Semiconductor Physics	IRAQ
Oday A. HAMMADI	Asst. Professor	Managing Editor	Molecular Physics	IRAQ
Intesar F. RAMLEY	Professor	Member	Communications Eng.	CANADA
Khaled A. AHMED	Professor	Member	Theoretical Physics	IRAQ
Manal J. AL-KINDY	Asst. Professor	Member	Electrical Engineering	IRAQ
Kais A. AL-NAIMEE	Asst. Professor	Member	Quantum Optics	ITALY
Abdulhadi ALKHALILI	Professor	Member	Medical Physics	U.S.A
Abdulmajeed IBRAHIM	Professor	Member	Solid State Physics	IRAQ
Loay E. GEORGE	Asst. Professor	Member	Computers & Networks	IRAQ
Haitham M. MIKHLIF	Lecturer	Member	Molecular Physics	UK

Editorial Office:

P. O. Box 55259, Baghdad 12001, IRAQ Website: www.iragiphysicsjournal.com

Emails: info@iraqiphysicsjournal.com, editor_ijap@yahoo.co.uk, editor@ijaponline.com

ADVISORY BOARD

Abdullah M. SUHAIL, Professor, Department of Physics, College of Science, University of Baghdad, IRAQ Adel K. HAMOUDI, Professor, Department of Physics, College of Science, University of Baghdad, IRAQ Andrei KASIMOV, Professor, Institute of Material Science, National Academy of Science of Ukraine, Kiev, UKRAINE Ashok KUMAR, Professor, Harcourt Butler Technological Institute, Nawabganj, Kanpur, Uttar Pradesh 208 002, INDIA Chang Hee NAM, Professor, Korean Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, KOREA EI-Sayed M. FARAG, Professor, Department of Sciences, College of Engineering, Al-Minofiya University, EGYPT Franko KUEPPERS, Professor, Darmstadt University of Technology, Mornewegstraße 32, Darmstadt, GERMANY Gang XU, Assistant Professor, Department of Engineering and Physics, University of Central Oklahoma, U.S.A Heidi ABRAHAMSE, Professor, Faculty of Health Sciences, University of Johannesburg, SOUTH AFRICA Mansoor SHEIK-BAHAE, Associate Professor, Department of Physics & Astronomy, University of New Mexico, U.S.A Mazin M. ELIAS, Professor, Laser Institute for Postgraduates, University of Baghdad, Al-Jadiriyah, Baghdad, IRAQ Mohammad Robi HOSSAN, Assistant Professor, Dept. of Engineering and Physics, Univ. of Central Oklahoma, U.S.A Mohammed A. HABEEB, Professor, Department of Physics, Faculty of Science, Al-Nahrain University, Baghdad, IRAQ Morshed KHANDAKER, Associate Professor, Dept. of Engineering and Physics, Univ. of Central Oklahoma, U.S.A Muhammad A. HUSSAIN, Assistant Professor, Dept. of Laser and Optoelectronics Eng., Al-Nahrain University, IRAQ Mutaz S. ABDUL-WAHAB, Assistant Professor, Dept. of Electric and Electronic Eng., University of Technology, IRAQ Nadir F. HABOUBI, Professor, Department of Physics, College of Education, Al-Mustansiriya Univ., Baghdad, IRAQ Shivaji H. PAWAR, Professor, D.Y. Patil University, Kasaba Bawada, Kolhapur-416 006, INDIA Xueming LIU, Professor, Department of Electronic Engineering, Tsinghua University, Shuang Qing Lu, Beijing, CHINA

SPONSORED AND PUBLISHED BY

THE IRAQI SOCIETY FOR ALTERNATIVE AND RENEWABLE ENERGY SOURCES & TECHNIQUES (I.S.A.R.E.S.T.)

Yanko SAROV, Assistant Professor, Micro- and Nanoelectronic Systems, Technical University Ilmenau, GERMANY Yushihiro TAGUCHI, Professor, Department of Physics, Chuo University, Higashinakano Hachioji-shi, Tokyo, JAPAN

IRAQI JOURNAL OF APPLIED PHYSICS

ISSN (Print): 1813-2065, ISSN (Online): 2309-1673, ISSN (Letters): 1999-656X

" INSTRUCTIONS TO AUTHORS "

CONTRIBUTIONS

Contributions to be published in this journal should be original research works, i.e., those not already published or submitted for publication elsewhere, individual papers or letters to editor.

Manuscripts should be submitted to the editor at the mailing address:

Iraqi Journal of Applied Physics, Editorial Board, P. O. Box 55259, Baghdad 12001, IRAQ

Website: www.iraqiphysicsjournal.com

Email: editor@iraqiphysicsjournal.com, editor_ijap@yahoo.co.uk

MANUSCRIPTS

Two hard copies with soft copy on a compact disc (CD) should be submitted to Editor in the following configuration:

- One-column Double-spaced one-side A4 size with 2.5 cm margins of all sides
- Times New Roman font (16pt bold for title, 14pt bold for names, 12pt bold for headings, 12pt regular for text)
- Letters should not exceed 10 pages, papers should not exceed 20 pages and reviews are up to author.
- Manuscripts presented in English only are accepted.
- English abstract not exceed 150 words
- 4 keywords (at least) should be maintained on (PACS preferred)
- Author(s) should express all quantities in SI units
- Equations should be written in equation form (italic and symbolic)
- Figures and Tables should be separated from text
- Figures and diagrams can be submitted in colors for assessment and they will be returned to authors after provide printable copies
- Charts should be indicated by the software used for
- Only original or high-resolution scanner photos are accepted
- For electronic submission, articles should be formatted with MS-Word software.

AUTHOR NAMES AND AFFILIATIONS

It is IJAP policy that all those who have participated significantly in the technical aspects of a paper be recognized as co-authors or cited in the acknowledgments. In the case of a paper with more than one author, correspondence concerning the paper will be sent to the first author unless staff is advised otherwise.

Author name should consist of first name, middle initial, last name. The author affiliation should consist of the following, as applicable, in the order noted:

- Company or college (with department name or company division), Postal address, City, state, zip code, Country name, contacting telephone, and e-mail

REFERENCES

The references should be brought at the end of the article, and numbered in the order of their appearance in the paper. The reference list should be cited in accordance with the following examples:

[1] X. Ning and M.R. Lovell, "On the Sliding Friction Characteristics of Unidirectional Continuous FRP Composites", ASME J. Tribol., 124(1) (2002) 5-13.

[2] M. Barnes, "Stresses in Solenoids", *J. Appl. Phys.*, 48(5) (2001) 2000–2008. [3] J. Jones, **"Contact Mechanics"**, Cambridge University Press (Cambridge, UK) (2000), Ch.6, p.56.

[4] Y. Lee, S.A. Korpela and R. Horne, "Structure of Multi-Cellular Natural Convection in a Tall Vertical Annulus", Proc. 7th International Heat Transfer Conference, U. Grigul et al., eds., Hemisphere (Washington DC), 2 (1982) 221–226.

[5] M. Hashish, "Waterjet Technology Development", High Pressure Technology, PVP-Vol. 406 (2000) 135-140.

[6] D.W. Watson, "Thermodynamic Analysis", ASME Paper No. 97-GT-288 (1997).
[7] C.Y. Tung, "Evaporative Heat Transfer in the Contact Line of a Mixture", Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1982).

Authors will receive proofs of papers and are requested to return one corrected hard copy with a WORD copy on a compact disc (CD). New materials inserted in the original text without Editor permission may cause rejection of paper.

COPYRIGHT FORM

Author(s) will be asked to transfer copyrights of the article to the Journal soon after acceptance of it. This will ensure the widest possible dissemination of information.

OFFPRINTS

Authors will receive offprints free of charge and any additional reprints can be ordered.

SUBSCRIPTION AND ORDERS

Annual fees (4 issues per year) of subscription are:

50 US\$ for individuals inside Iraq; 200 US\$ for institutions inside Iraq; 300 US\$ for institutions abroad. 100 US\$ for individuals abroad:

Fees are reduced by 25% for I.S.A.R.E.S.T. members. Orders of issues can be submitted by contacting the editor-inchief or editorial office at admin@iraqiphysicsjournal.com, or editor_ijap@yahoo.co.uk to maintain the address of issue delivery and payment way.

Noor E. Naji

Branch of Materials Science, School of Applied Sciences, University of Technology, Baghdad, Iraq

Solving Laplace Equation for Numerical Treatment of Surface Potential Generated by Laser-Solid Interaction

In this work, a numerical treatment to solve Laplace equation was presented in order to determine the electric potential generated at the surface of a solid irradiated by laser pulses. This treatment was based on the finite-difference method (FDM) to give the governing partial differential equation for a particular electromagnetic problem. The experimental data required for the numerical treatment were taken from a solid stainless-steel 304 sample irradiated by 1.069 µm Nd:YAG laser pulses with intensity of 12.4 MW/cm². The collected results were interpolated as temporal and spatial voltages and they represent the potential over a lateral distance of 9 mm. The treatment has considered two main considerations; charge and hole size. A large change in the potential values appears the interaction zone. This will cause a large electric field. This means that there is a large force acts on the charges leading to a large acceleration and collision and therefore provides good ionization and absorption conditions, which was not considered before. The most important advantage of this method is it can clearly define for the first time the position of the Knudsen layer, which defines the region where the density, velocity and pressure changes dramatically.

Keywords: Laser-produced plasma; Field emission; Thermoionic emission, Laplace equation **Received**: 11 October 2020; **Revised**: 18 November 2020; **Accepted**: 25 November 2019

1. Introduction

Electron emission is defined as liberation of free electron from a surface of a substance caused by the external energy transferred to the electrons. The amount of outside energy required by electron to be emitted from the metal surface is known as work function. The work function usually defined in electron volt (eV) unit [1-3].

The additional external energy required by the electron to emit from the metal surface could come from few sources such as heat energy (thermionic emission), electromagnetic radiation (photoemission) and/or an electric field (field emission) [4-6].

Accordingly there are three methods of obtaining electron emission from the metal surface: field emission, photo emission, and thermionic emission [7].

In electron emission, the additional energy required by the electron come in the form of electric field .Very intense electric field is required to produce field emission [8]. Usually a voltage of the order of a million volts per centimeter distance between the emitting surface and the positive conductor is necessary to cause field emission [9,10]. Field emission can be obtained at temperature much lower than required for thermionic emission and therefore it is also sometimes called as cold cathode emission or auto electronic emission [11].

In photo emission, the additional energy come to cathode by photons if the energy from photons is greater than the metal work function the free electron will knock out from the cathode surface [7]. The emitted electron called as photo electron. The amounts of photo electron depend of the light intensity [8].

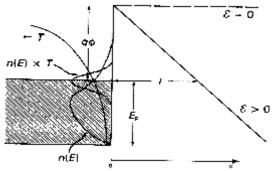


Fig. (1) Free-electron model of a metal surface suitable for the discussion of Field emission process. The tunneling transmission coefficient $\,T\,$ increases exponentially with $\,E\,$ as the barrier becomes more narrow but the density of occupied states available for tunneling $n\,(E)$ decreases rapidly above the Fermi energy; the result is that the product of $\,T\,$ and $\,n(E)$ has a maximum near the Fermi energy [4]

Photons illuminating a metal surface may also liberate electrons. If the photon has energy at least equal to the work function, then electrons will be emitted [9], i.e.

$$\lambda < \frac{hc}{e\phi} \tag{1}$$

where λ is the wavelength of the incident light, c the velocity of light and h Plank's constant.

For shorter wavelengths the electrons are emitted with an initial velocity given by $mv^2=2(hv-e\phi)$ [10].

Photoelectrons are emitted when a single photon (quanta) of energy hv is absorbed by the solid; where h are Planck's constant and v the frequency of the used

light [11]. The energy of the photon must be larger than the energy separation between the top of the valence band and the vacuum level. At low temperatures and in metals, this energy is called the work function [12].

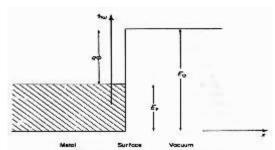


Fig. (2) Free-electron model of a metal surface suitable for the discussion of photoemission processes. When the photon energy hv is larger than the work function $q\phi$, photoemission of the photoexcit electron into vacuum is possible [13]

The current density measured at the collecting electrode is given by the fowler equation

$$J = CT^2 F \left[\frac{h\nu - e\phi}{k_B T} \right] \tag{2}$$

where C is nearly a constant and F is a tabulated function that is almost exponential [14]

In the thermoionic method, the additional energy comes to the electron in the form of heat energy, by the electrons the energy transferred into kinetic energy [1]. Thermionic emission is the escape of electrons from a heated surface. Electrons are effectively evaporated from the material. To escape from the metal, electrons must have a component of velocity at right angles to the surface and their corresponding kinetic energy must be at least equal to the work done in passing through the surface [15].

At any finite temperature there is a small fraction of electrons that have a thermal energy higher than the vacuum (Fig. 3) [15].

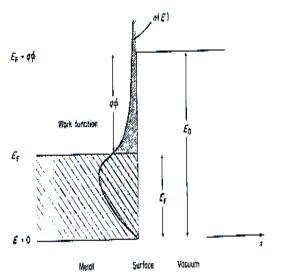


Fig. (3) Free-electron model of a metal surface suitable for the discussion of Thermionic emission processes. Electrons with energy greater than EF+q ϕ in the higher energy tail of the Fermi distribution can be emitted into vacuum [12]

The current density can be written as [13]

$$J_{z,th} = AT^{2} \left[1 + \frac{E_{A}}{K_{b}T} \right] \exp\left[-\frac{E_{w}}{K_{b}T} \right]$$
 (3)

where A is referred to as being the Richardson constant and is given by

$$A = \frac{m^* e k_B^2}{2\pi^2 h^3} = \frac{4\pi m^* e k_B^2}{h^3} = 120 \frac{A}{\text{cm}^2 \cdot \text{K}^2}$$
 (4) where m^* is the effective mass, e is the electronic

where m^* is the effective mass, e is the electronic charge, k_B is the Boltzmann constant and h is the Planck's constant [14]

2. Governing Equations

The work is based on Poisson's equation for potential inside the plasma, which can be written as [15]

$$\nabla^2 V = -\frac{\rho}{\varepsilon_{\circ}} \tag{5}$$

where ∇^2 is the Laplacian operator, V is the potential and ρ is space charge density

In regions of no charges, the equation turns into

$$\nabla^2 V = 0 \tag{6}$$

This equation is called Laplace's equation.

3. Numerical Solution

There are many elegant analytical solutions to Laplace's equation in special geometries, but nowadays, real problems are usually solved numerically [16-20]. Computers and software are now so powerful that it can be easier to obtain a computer solution than to find the exact one in reference books. There are three command methods to finding a numerical solution [21]:

- 1. Finite-Difference Method (FDM)
- 2. Finite-Element Method (FEM)
- 3. Boundary Element Method (BEM)

In our work, the finite-difference method (FDM) is used to give the governing partial differential equation for a particular electromagnetic problem. The steps involved in the application of the FDM are [21,22]:

1) Dividing the domain of interest into a grid (usually rectangular) in one, two or three dimensions as shown below

V(x,y,z) is three dimensional (3D) solution

V(x,y) is two dimensional (2D) solution (no z-variation) V(x) is one dimensional (1D) solution (no y or z-variation)

- 2) Developing algebraic equations, which approximate the partial derivatives in the governing equations (difference equations).
- 3) Solving the set of algebraic equations.

To solve the Poisson's and Laplace's equations numerically, the region of interest can be divided into rectangular grid over which the difference equation approximations to the 2^{nd} order derivatives are defined. The grid points located on the boundaries represent fixed nodes where the potential is known [23,24]. The internal grid points from the boundary are defined as free nodes where the potential must be computed. The grid points are labeled in the *x*-direction as i, i+1, i+2, etc, and we will label grid point in the *y*-direction j, j+1,

j+2, etc. In other words, we will write the equations at all internal nodes of a grid with a regular step size, h, in the x-direction as Δx , and in the y-direction, as Δy as shown in Fig. (4).

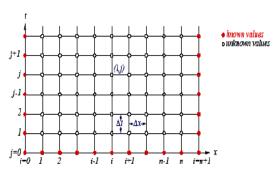


Fig. (4) Two-dimensional grid considered in this analysis, where i is spatial index and j temporal index

In a source-free region (ρ =0), Poisson's equation is reduced to Laplace's equation

$$\frac{V_{i+1,j} - 2V_{i,j} + V_{i-1,j}}{\Delta x^2} + \frac{V_{i,j+1} - 2V_{i,j} + V_{i,j-1}}{\Delta y^2} = 0$$
 (7)

which is a rectangular-grid 2D Laplace's equation. Also,

$$V_{i,j} \approx \frac{1}{4} [V_{i+1,j} + V_{i-1,j} + V_{i,j+1} + V_{i,j-1}]$$
 (8)

which is a square-grid 2D Laplace's equation

The 2D Laplace's equation on a square grid illustrates how the potential at any given point is described as the average of the four surrounding points. Equation (8) could be expressed in matrix from as

$$AV = B$$

For solving a discrete PDE, we use the matrix inverse method:

$$V = A^{-1}B$$

where V is the potential and A and B are:

$$A = \begin{pmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ \end{pmatrix} \quad B_{1} = \begin{pmatrix} B_{1} \\ B_{2} \\ B_{3} \\ B_{4} \\ B_{5} \\ B_{6} \\ B_{7} \\ B_{8} \\ B_{9} \end{pmatrix}$$

4. Experimental Configuration

A solid stainless steel (St. St. 304) sample was irradiated by Nd:YAG laser pulses with intensity of 12.4 MW/cm² and wavelength of 1.069 µm. The laser was focused on spot of area 1.38x10⁻³cm² using a 10cm focusing lens [18]. The laser pulse is shown in Fig. (5), which was detected with optical detector.

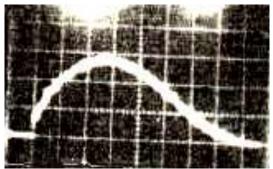


Fig. (5) The Nd:YAG laser pulse considered in this work [25]

A surface voltage is generated during the interaction between laser pulse and the sample and was previously measured [26] as shown in Fig. (6).

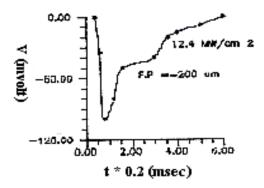


Fig. (6) The voltage generated on a surface irradiated by Nd:YAG Laser pulse as function of irradiation time [26]

A floating potential probe was used at a distance 3mm away from the sample surface to measure the potential of the plasma generated and previously measured [27].

5. Model Assumptions

To start the analytical modeling of the experimental results, it was assumed the following to provide a solution of the problem.

- 1. Considering the material as a layer that first melts then evaporates, where the skin depth represents thickness of this layer and the spot area represents the area of this layer.
- 2. The system is placed into an evacuated chamber where the right and left boundary voltages (V_{bR} and V_{bL}) are zero.
- 3. Neglecting the charge loss produced from attraction of charge with surface.
- 4. The net charge, not the positive or the negative charge, is considered because the data taken from reference [27] represent the net charge.
- 5. The ionization by absorption is neglected.
- 6. No time delay between the charge at the boundary and the interaction zone occurs. This is needed for proper time analysis.
- 7. The charge is not accumulated at the interaction zone. This is true only for high vacuum.
- 8. Assume the problem is spatially 3D (x,y,z) and because of symmetry around z we have considered

- (x,z) for simplicity and reducing matrix size and time of calculation.
- The Cartesian coordinates were used because the charge distribution and motion is not a point source or cylindrical.

The considered model needs many predefined parameters as well as numerical solutions of Laplace and Poisson equations. The working steps are:

5.1 Boundary Conditions Consideration

The values of the boundary conditions are taken as: (a) Metal surface potential boundary data values are provided by reference [28], the experimental temporal voltage variation of the surface is shown in Fig. (7). This potential is generated from the reaction of the St-St. 304 sample with the Nd:YAG laser pulses of incident intensity 12.4 MW/cm²

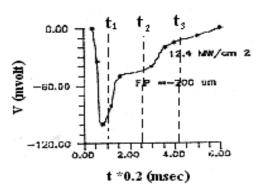


Fig. (7) The instantaneous potential difference measured over time provided by [28]

Using least square fitting (LSF) to represent these results with polynomials yields the results shown in the appendix, where t_1 , t_2 and t_3 are selected times on the curve shown in Fig. (7). The data (-) and polynomials (*) are plotted and shown in Fig. (8) and a good agreement is observed.

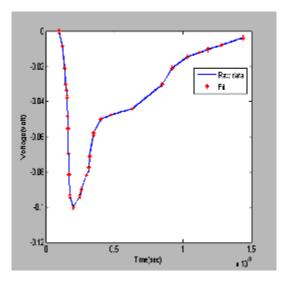


Fig. (8) The representation of the experimental data and curve fitting polynomial of the potential

(b) The boundary data at a distance of 3mm away from the surface is taken from the experimental result of reference [29], which measured the temporal voltage using three floating probes: one single cylindrical and two circular (4.5 and 9 mm in diameter). These results are collected and interpolated as temporal and spatial voltages and they represent the potential over a lateral distance of 9 mm. We can see that in Fig. (9).

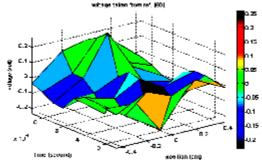


Fig. (9) The temporal variation of voltage at the probes taken from [29]

In this work, the dimensions of the target are $5\times2\text{mm}^2$, therefore, the potentials were selected over a central distance of 5 mm instead of 9 mm and for the same durations, as shown in Fig. (10). They are considered as the upper boundary conditions.

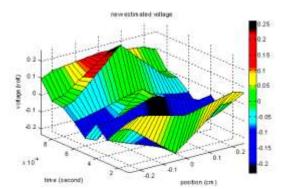


Fig. (10) New estimated voltage at a lateral distance of 5mm

5.2 The Charge Consideration

The values of the charge density were taken from two resources:

First: values obtained from [29] are the values of charge density for different time and space from the center point where the laser interaction with solid as shown in Fig. (11). The data were integrated as:

$$\rho(t) = \int_{x=-4.9}^{4.9} \rho(x,t) dx$$
 (9)

The values of $\rho(x,t)$ are taken from all the range in Fig. (12). This charge is assumed to exist in the hole based on the following assumption from charge reservation law:

$$Q_{probe} = Q_{hole}$$

$$\rho_{probe}A_{probe} = \rho_{hole}A_{hole}$$

where ρ_{probe} , ρ_{hole} , and A_{probe} , A_{hole} are charge densities and surface areas of probe and hole, respectively

This charge may be distributed on the first layer of the hole, or overall the layers of the hole. For the first layer

$$\left(\frac{\int \rho_{probe}}{H_{wlst}}\right) (L_{probe} t_{probe}) = \rho_{hole} (hkH_w)$$
(10a)

where H_{w1st} and H_w are the number of points of 1st layer (hole) and one layer, respectively, L and t are the length and thickness of the probe, respectively

For all layers

$$\left(\frac{\int \rho_{probe}}{H_{wall}}\right) (L_{probe} t_{probe}) = \rho_{hole} (hkH_{w})$$
(10b)

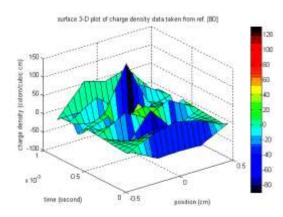


Fig. (11) Surface of 3D plot of charge density data

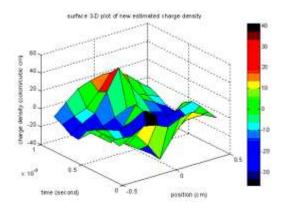


Fig. (12) Surface 3D plot of new estimated charge density

Second: Using thermal emission, we have calculated the total current density as [30]

$$J = A^* T^2 \exp\left(-E_{\scriptscriptstyle W}/k_B T\right) \tag{11}$$

where A^* is Richardson constant (A/cm².K²), T is the temperature (K), E_w is the work function (J). The electronic current density can be obtained by

$$J_e = A^* T^2 \exp(-E_w/k_B T) = 138.936 \text{ A/cm}^2$$

$$I = J \times A = 736.365036397 \times 10^{-3} \text{ A}$$

$$Q = I \times t_{layer} = 3788.64252135 \times 10^{-9} \text{ C}$$

The charge appears to be very small compared to that calculated from probe measurements. Therefore, we will use the charge from these probe measurements.

5.3 Hole Size Consideration

1. A fixed hole size of 1x1 mm was considered.

2. A variable hole size was considered. It was taken from previous heat model of reference [31] who considered removing a skin layer according to the deposited variable heat delivered by the laser source. The number of layers is temporally varied and changes as:

$$\frac{\Delta n}{\Delta t} = -9.6938e + 024t^6 + 2.6055e + 023t^5 - 6.3024e + 020t^4 + 6.1694e + 017t^3$$

$$-2.9029e + 0.014t^2 + 5.6906e + 0.000t + 30.0932$$

We have derived the size from the following equation:

 Z_H (size of hole) = n_L (number of layers at that time) x Z_L (size of layer)

where Z_L (size of layer) = δ (skin depth) x A (spot area) the skin depth = 10^{-7} cm, and the spot area = 1.38×10^{-3} cm²

This is satisfactory if we are looking for the variation of voltage over all space over the surface up to upper boundary.

6. Solution of Potential Equation

The potential over the surface up to the boundary is derived by solving Possion's equation numerically [32]

$$\nabla^2 V = -\frac{\rho}{\varepsilon_{\circ}} \tag{12}$$

The 2D Poisson's equation in rectangular coordinates is written as

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = -\frac{\rho}{\varepsilon_{\circ}}$$
 (13)

To solve the Poisson and Laplace equations numerically, the same steps were used as discussed before.

In our case, the nodal grid that is created and used in the derivation of the finite difference equations. A grid is spaced every $5x10^{-3}$ /d cm along the horizontal and vertical axis to ensure that at least 31 nodes are used in obtaining the potential distribution as shown in Fig. (13).

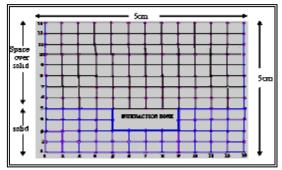


Fig. (13) Nodal grid formed in order to derive the finite difference equations

A 31×31 grid size was used to represent reasonably the actual size 5×5mm and 2mm of the metal surface. Execution of a program with this size of grid is fast since matrix size is not large. Although the program is

made flexible to any size, but MATLAB for larger size would be slow.

6.1 Charge consideration

The charges collected on the probes are considered to be the same as in the hole. This is calculated as:

 $Q_{(t)} = \rho_{probe(t)} L = \rho_{hole(t)} W$ (14) where L is the boundary length, W is the hole length, $\rho_{probe(t)}$ is the temporal charge density on the probe and $\rho_{hole(t)}$ is the temporal charge density in the hole

This charge may be divided equally on the first layer of the hole points or may be divided entirely over all the hole size (2D). The problem is also solved with no charge ($\nabla^2 V$ =0) Laplace's equation for comparison.

7. Model Description

Analysis of the plasma potential production from interaction of a laser beam with a workpiece is based on development of a two-dimensional model for the geometry shown in Fig. (14).

The laser beam is characterized by its wavelength λ , the beam spot radius ω_0 at the surface, the skin depth δ , and the power density I within the spot. The workpieces were secured by a rectangular plate with a square hole in the middle, so that the laser beam could irradiate the exposed workpiece in the middle of the clamp plate.

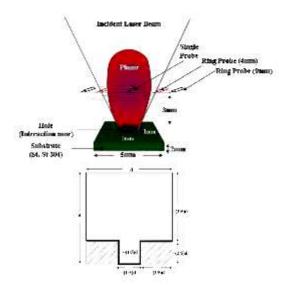


Fig. (14) Schematic description of the boundary conditions of the mathematical model used in this work

The model described in this research to explains a physical matter that can be described as formed of a material (St. St. 304) of 2mm thickness and 5mm length, three probes (single cylindrical, and two ring probes of 9 and 4.5mm diameters) at a distance of 3mm from the target, where the values produced from these probes were assumed as boundary conditions for the upper limits of the model and the boundary condition of the lower limit of the model have been taken from references [33-35]. Finally, the boundary conditions on the left and right side of the mathematical model has been assumed zero considering that the system is

located in an evacuated chamber, as shown in Fig. (14). The results have taken into account all the variables mentioned above according to the following diagram.

8. Results and Discussion

The problem is also solved with no charge $\nabla^2 V = 0$ Laplace's equation for comparison. We have solved the problem with not hole and with only metal surface potential boundary data values as shown in Fig. (15).

The problem was solved in the same case as in the case given above over but with metal surface potential boundary data values and with boundary data at 3mm away from the surface as shown in Fig. (16). Also, we have solved the problem with hole but we may consider affixed hole size $(1\times1 \text{mm})$ and with only metal surface potential boundary data values as shown in Fig. (17).

The problem is solved in the same case as before but with metal surface potential boundary data values and with boundary data at 3mm away from the surface as shown in Fig. (18). We also have solved the problem with hole, and we may consider hole size a variable with time but with only metal surface potential boundary data values as shown in Fig. (19).

We have solved the problem in the same case as before but with metal surface potential boundary data values and with boundary data at 3mm away from the surface as shown in Fig. (20).

By comparing the results, the step in the potential due to boundary condition appears small because of the scale range. The potential Gaussian distribution doesn't appear in Fig. (15). This is clearly demonstrate how importance to consider the potential in the interaction zone. By comparing the results of figures (16 to 20) with the corresponding cases in Fig. (16), they demonstrate the same importance of the existence of the potential.

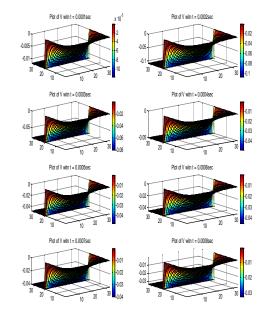


Fig. (15) The solution of the problem with not hole and with only metal surface potential boundary data values

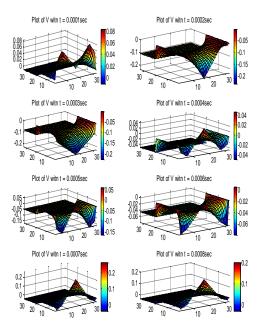


Fig. (16) The solution of the problem in the same case as before of over but with metal surface potential boundary data values and with boundary data at 3mm away from the surface. Boundary data at 3mm away from the surface

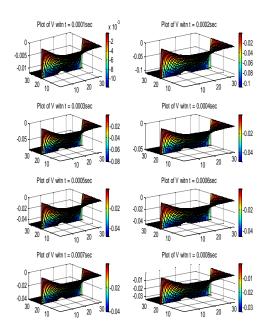


Fig. (17) The solution of the problem with hole but we may consider affixed hole size $(1\times1mm)$ and with only metal surface potential boundary data values

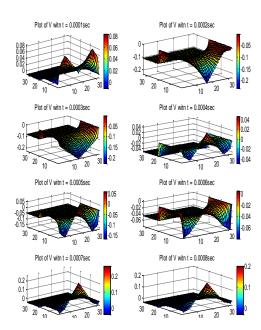


Fig. (18) The solution of the problem in the same case as before but with metal surface potential boundary data values and with boundary data at 3mm away from the surface

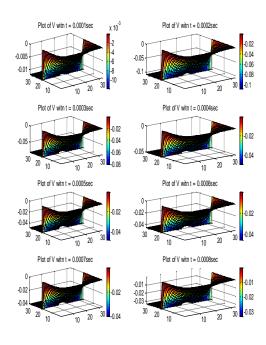


Fig. (19) The solution of the problem with hole, and we may consider a variable hole size with time but with only metal surface potential boundary data values

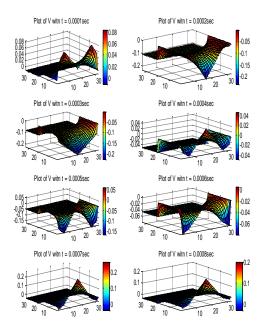


Fig. (20) The solution of the problem in the same case as before but with metal surface potential boundary data values and with boundary data at 3mm away from the surface

9. Conclusions

According to the results obtained from this work, the following remarks can be concluded. A large change in the potential values appears the interaction zone. This will cause a large electric field. This means that there is a large force acts on the charges leading to a large acceleration and collision and therefore provides good ionization and absorption conditions, which was not considered before. The most important advantage of this method is it can clearly define for the first time the position of the Knudsen layer, which defines the region where the density, velocity and pressure changes dramatically. For comparison, we have calculated the potential where boundary voltage, charge and hole are removed. This comparison clearly shows that the potential changes mentioned previously are genuine effect. The amount of the potential gradient depends on the charge. The symmetry of the potential distribution is affected by the boundary condition, while the value of the potential proportional to it.

References

- [1] M. Moisan and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface waves", *J. Phys. D: Appl. Phys.*, 24 (1991) 1025.
- [2] N.R. Isenor, "Effect of background gas on laser-induced electron emission from metal surfaces", *J. Appl. Phys.*, 36 (1965).
- [3] C.M. Verber and A.H. Adelman, "Laser-induced thermoionic emission from tantalum", *J. Appl. Phys.*, 36 (1965).
- [4] P. Langer and G. Tonon, "Laser induced emission of electrons, ions and X-ray from solid targets", *IEEE J. Quantum Electron.*, 2(9) (1966).

- [5] T.U. Arifov and G.A. Askarian, "Laser-induced current pulses from a target in a gas", *Sov. Phys. JETP*, 13(2) (1968).
- [6] T.U. Arifov and V.A. Makarenko, "Emission of negatively charged particles in laser irradiation of tungsten", *Sov. Phys. JETP*, 21(2) (1976).
- [7] T.U. Arifov and V.A Makarenko, "Emission of hot electrons from metals by microsecond laser pulses", *Sov. Phys. JETP*, 23(5) (1978).
- [8] J. Teng Lin and T.F. George, "Laser-generated electron emission from surfaces: effect of the pulse shape on temperature and transient phenomena", *J. Appl. Phys.*, 54(1) (1983).
- [9] B.I. Vasile'v and A.Z. Grasyuk, "Change in the potential of a charged target subjected to a laser plasma", *Sov. Phys. Tech. Phys.*, 31(5) (1986).
- [10] L.A. Gizzi et al., "Measurements of thermal transport in plasmas produced by picosecond laser pulses", *Laser and Particle Beams*, 13(4) (1995) 511-524.
- [11] J.R. Ho, C.P. Grigopoulos and J.A.C. Humphrey, "Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum", *J. Appl. Phys.*, 79(9) (1996) 7205-7215.
- [12] M. Borghesi et al., "Characterization of laser plasmas for interaction studies", *Phys. Rev. E*, 54(6) (1996) 6769-6773.
- [13] T. Ditmire et al., "keV x-ray spectroscopy of plasmas produced by the intense picosecond irradiation of a gas of xenon clusters", *J. Phys. B: At. Mol. Opt. Phys.*, 31 (1998) 2825-2831.
- [14] V.K. Senecha et al., "Volume effect of laser produced plasma on X-ray emissions", *Pramana J. Phys.*, 55(5-6) (2000) 789-795.
- [15] M.I.K. Santala et al., "Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions", *Phys. Rev. Lett.*, 84(7) (2000) 1459-1462.
- [16] K.W. Ledigham et al., "Photonuclear physics when a multiterawatt laser pulse interacts with solid targets", *Phys. Rev. Lett.*, 84(5) (2000) 899902.
- [17] J. Hermann et al., "Investigation of SiO emission spectra observed in a pulsed discharge and a laser-induced plasma", *J. Phys. B: At. Mol. Opt. Phys.*, 34 (2001) 1917-1927.
- [18] M. Galemberti et al., "Investigation of ultraintense femtosecond laser-plasma interactions through w and 2w imaging and spectroscopy", *Laser and Particle Beams*, 19 (2001) 47-53.
- [19] A. Salcedo et al., "Studies of stimulated Raman scattering in laser plasma interactions", *Private communications*, 2002.
- [20] P. Tomassini et al., "Application of novel techniques for interferogram analysis to laser-plasma femtosecond probing", *Laser and Particle Beams*, 20 (2002) 195-199.
- [21] M. Borghesi et al., "Electric field detection in laser-plasma interaction experiments via the

- proton imaging technique", *Phys. of Plasma*, 9(5) (2002) 2214-2220.
- [22] P. Tomassini et al., "Spectroscopy of laser-plasma accelerated electrons: A novel concept based on Thomson scattering", *Phys. of Plasma*, 10(4) (2003) 917-920.
- [23] L.A. Gizzi et al., "Transient ionization in plasmas produced by point-like irradiation of solid Al targets", *Phys. of Plasma*, 10(12) (2003) 4601-4604.
- [24] M. Borghesi et al., "Measurement of highly transient electrical charging following high-intensity laser-solid interaction", *Appl. Phys. Lett.*, 82(10) (2003) 1529-1531.
- [25] T.E. Itinia et al., "Numerical study of ultra-short laser ablation of metals and laser plume dynamics", *Appl. Phys. A: Mater. Sci. Process.*, (2004) 1-4.
- [26] S.Q. Al-Qaisy, "Studying the surface charge resulted from plasma generated from its interaction with laser", M.Sc. thesis, 1995, University of Technology, Baghdad.
- [27] "Electron Emission", on line report available at http://www.sap.or.id/.

- [28] L.J. Kevin, G.O. Patrick and W.F. Donald, "Generalized electron emission model for field, thermal, and photoemission", *Appl. Phys. Lett.*, 81(20) (2002).
- [29] H.B. Richard, "Electrons in Solids: An Introductory survey", 2nd ed. 1986.
- [30] "Other Important Properties of material", online report available at http://www.asu.edu/~Ferry/ECE352.htm .
- [31] B. Gerold, "Solid State Physics", Int. ed. 1985 by Academic Press, Inc.
- [32] M. von Allmen, "Laser-Materials Processing", Springer-Verlag (Berlin), 1996.
- [33] B. Eliasson, "Numerical of Vlasov-Maxwell Modeling of Space Plasma", Ph.D. thesis, 2002, Uppsala University, Sweden.
- [34] "Numerical Solution of the Transient Diffusion Equation using the Finite Difference Method", online report available at http://www.research.ibm.com/jourrnal/rd/444/jordansweet.html
- [35] S.M. Ali, "Laser-Plasma Interaction", M.Sc. thesis, 1992, School of Applied Sciences, University of Technology, Baghdad.

Appendix


 $V_1(t) = 8.758231326297914e + 0.23t^6$

9.647570877481166e+020t⁵+4.3214683770712e+017t⁴+1.004569463264522e+014t³+1.274971036417507e+010t²-8.371153279949487e+005t+2.221652415436611e+001 for $0 \le t \le t_1$

 $V_2(t)$ =-4.216190398182638e+010t³+4.106638304623091e+007t² -

1.283412744333760e+004t+1.211358590639905e+000 for $t_1 \le t \le t_2$

 $V_3(t) = 1.058336673315529e + 00t^2 - 8.700171524786168e + 001t - 3.133347479914106e - 002$ for $t_2 \le t \le t_3$

The Winter Nuclear and Particle Physics Conference is a national meeting for the Canadian subatomic physics community, with a special focus on providing a forum for junior researchers (students and postdocs) to present their research and interact with groups across Canada. The 2021 meeting is being organized by McGill University and TRIUMF, and as usual will feature sessions focusing on the research areas of interest to the Canadian subatomic physics community, both experimental and theoretical.

TOPICS

Electroweak and Higgs physics Neutrino properties QCD and hadrons Physics beyond the Standard Model **Nuclear structure** Nuclear and particle astrophysics

ORGANIZING COMMITTEE

Prof. Thomas Brunner (McGill - chair)

Prof. Andreas Warburton (McGill)

Prof. Andreas Warburton (McGill)
Prof. Ken Ragan (McGill)
Prof. Beatrice Franke (TRIUMF)
Prof. Blair Jamieson (University of Winnipeg)
Prof. Gwen Grinyer (University of Regina)
Prof. Alain Bellerive (Carleton University)
Prof. Tony Noble (Queen's University)
Prof. Jens Dilling (TRIUMF)
Jana Thomson (TRIUMF)

Ruqia A.H. Hassan Fuad T. Ibrahim

Preparation and Characterization of Anatase Titanium Dioxide Nanostructures as Smart and Self-Cleaned Surfaces

Department of Physics, College of Science, Baghdad University, Baghdad, IRAQ Highly-pure titanium dioxide (TiO₂) thin films were prepared by dc reactive magnetron sputtering technique onto glass substrates after different deposition times. The XRD pattern of TiO₂ powders extracted from the thin film samples showed intense and sharp reflections from the crystal planes belonging to the tetragonal anatase phase of TiO₂. As well, scanning electron microscopy has confirmed the formation of smooth and well-dispersed nano-surfaces. The optical measurements in the wavelength range 300-800 nm have confirmed that the energy band gap of the prepared films was ranging in 3.2-3.4 eV. The contact angle measurements were carried out using the sessile drop method as the contact angle of water droplet on the surface was measured before and after irradiation of these surfaces with UV radiation. The results showed that the contact angle of water droplet on the TiO₂ surface decreases after 30 minutes of UV irradiated for all samples, which confirms the high hydropholic characteristics of these samples.

Keywords: Contact angle; Smart surfaces; Self-cleaned surface; Titanium dioxide **Received**: 22 October 2020; **Revised**: 20 December 2020; **Accepted**: 27 December 2020

1. Introduction

The development of smart surfaces with switchable wettability have attracted numerous applications including fog-free eyeglasses and windshields, and self-cleaning cloth and glass [1]. With superhydrophilic property, TiO₂ has become one of the most attractive self-cleaning materials in the last two decades [2,3]. Nevertheless, the practicability superhydrophilic of TiO₂ films is limited as the ultraviolet (UV) irradiation is required to create the hydrophilic domains. Furthermore, when UV illumination is switched off, the TiO₂ film loses its superhydrophilic quality within minutes to hours [4]. Hence, the motivation of this work is to develop a TiO₂ film with permanent superhydrophilic wetting and antifogging without need for UV activation [5].

The wetting of a solid with water, where air is the surrounding medium, is dependent on the relation between the interfacial tensions (water/air, water/solid and solid/air). The ratio between these tensions determines the contact angle between a water droplet and a given surface. A contact angle of 0° means complete wetting, and a contact angle of 180° corresponds to complete non-wetting [6]. Hydrophobic surfaces with low wettability and contact angles of about 100° are known for a long time. The higher this angle the lower is the value of the adhesion work. Decreasing of the contact angle leads to enlarged values of the adhesion work (hydrophilic surfaces) [7].

By transferring the microstructure of selected plant surfaces to practical materials, superhydrophobic surfaces could be developed. The water repellency of plant surfaces has been known for many years. That water-repellent surfaces also indicate selfcleaning properties those been completely overlooked. The correlation between microstructure, wettability and contaminants in detail using lotus leaves was investigated and proved [8]. This was called the "Lotus Effect" because it can be demonstrated beautifully with the great leaves of the lotus plant. The micro-rough surfaces show contact angles higher than 130° [8]. That means the adhesion of water, as well as particles, is extremely reduced. Water which contacts such surfaces will be immediately contracted to droplets [7]. The particles of contaminants adhere to the droplet surfaces and are removed from the rough surface when the droplets roll of [8].

Different deposition techniques can be used to form titanium oxides films, including plasma-enhanced chemical vapor deposition (PECVD) [9], reactive evaporation [10], spray pyrolysis [11], solgel method [12], electron beam evaporation [13], and dc reactive magnetron sputtering [14-16].

This work focuses on preparation of TiO_2 thin films were by dc reactive magnetron sputtering technique. The structural and spectroscopic characteristics of these thin films were studied. In addition, a smart self-cleaning surface was fabricated and characterized from the prepared TiO_2 samples.

2. Experimental work

A homemade dc reactive magnetron sputtering system was used to deposit TiO₂ thin films on glass substrates. The chamber was pumped down by a twostage Leybold-Heraeuos rotary pump (24 m³/h) to a base pressure of about $5x10^{-3}$ mbar. The vacuum chamber was cleaned by using glow discharge for five minutes with 10 mA discharge current to remove contaminants on electrodes and inside chamber. Then, the chamber was filled with argon and oxygen gas mixture (1:1) to about 2.5x10⁻¹ mbar total pressure. A titanium sheet with purity of 99.9% was used as a sputtered target. The discharge current was maintained at 50 mA and the inter-electrode distance was maintained at 4 cm while deposition time was varied (1, 1.5, 2, 2.5 and 3 hours). More details on the dc reactive magnetron sputtering system can be found elsewhere [17-25].

In order to study the structural properties, the crystal structure was analyzed with a Shimadzu 6000 X-ray diffractometer system in which the source of radiation is Cu(kα) with wavelength of 1.5406 Å. A double-beam METERTECH SP8001 UV/Visible spectrophotometer was used to measure the spectroscopic characteristics of the prepared samples in the spectral range of 300- 800nm. The prepared nanostructures were introduced by a JEOL JSM-5600 scanning electron microscope (SEM).

A new technique was used to extract nanopowders from thin films deposited on glass substrates [26,27]. In this technique, the film sample is maintained on a copper plate and cooled down to -20°C using a highefficiency freezing unit. The sample was then exposed to ultrasonic waves generated by a Triode R.F. Oscillator and two transducers operating in the frequency range of 3-50 MHz.

Hydrophilic behavior was evaluated by measuring the contact angle of a water droplet on the films using contact angle device. A water droplet is injected on the surface of the film using micro-injector $(2\mu l)$ syringe pointed vertically down onto the sample surface. High resolution camera with macro lens which captures the image of the water droplet, and then analyzed using analysis software.

3. Results and Discussion

As shown in Fig. (1), intense and sharp peaks are seen those belong to the tetragonal crystallography of the anatase phase of TiO₂. All diffraction peaks identified and located at 25.5, 38.1, 48.36, 54.3 and 55.32 are indexed as anatase TiO₂ according to the JCPDS 21-1272 [28]. These peaks correspond to reflections of (101), (004), (200), (105) and (211) planes, respectively. As shown, TiO₂ nanopowder is polycrystalline with preferred orientation in (101) direction. The single phase (anatase) of TiO₂ was produced by preventing the effect of heat during the deposition process of TiO₂ film on the substrate. At temperature of about 600°C, the anatase phase

converts into rutile, therefore, the temperature of the substrate placed on the anode surface is reduced by cooling with circulating water at 10°C [29].

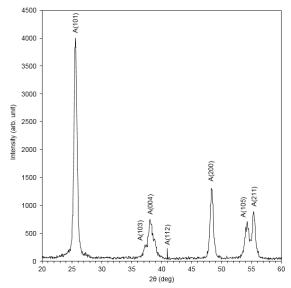


Fig. (1) XRD pattern of TiO_2 nanopowder prepared using 1:1 Ar: O_2 gas mixture after deposition time of 1.5 hours

Figure (2) shows the spectral transmittance of the prepared films in the spectral range of 300-800nm. It is clear that the transmittance is increased with film thickness and all samples shows higher absorption in the UV region and low absorption in the visible region while they are approximately transparent in the near-infrared (NIR) region. Obviously, the absorption edge of TiO₂ thin films lies in the range 360-390nm as the transmittance was rapidly increased in the visible region , which may be attributed to the presence of larger crystallites and hence higher scattering due to the surface roughness [30].

As the film thickness was increased by 100%, the energy band gap was decreased by 0.2 eV (from 3.4 to 3.2 eV). This is necessary to employ these films in some spectroscopic applications requiring thin films to absorb in both UV and visible regions, such as photocatalysts and solar cells. The increase in energy band gap with decreasing film thickness has an effect on the hydrophilic behavior of the prepared samples as this behavior highly depends on the saturation of amount of absorption light.

Table (1) Results of the thickness and energy gap of TiO2 thin

films		
Deposition time	Film thickness	Energy gap
(hour)	(nm)	(eV)
1	106.4	3.4
1.5	159.6	3.35
2	190	3.3
2.5	209	3.25
3	212.8	3.2

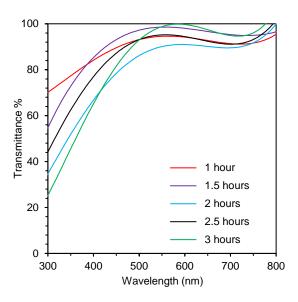
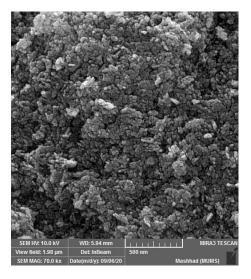



Fig. (2) Transmission spectra of TiO_2 thin films prepared after different deposition times

The FESEM images in Fig. (3) show surface morphology of the TiO_2 thin film sample prepared after deposition time of two hours. Smooth and uniform morphology surface is observed with the presence of granular grains. The nanoparticles show alignment and homogeneous distribution (with no voids), but their diameters are rather uniform. The surface also contains polyhedral shells distributed dispersively on the substrate, with some of them line up along the nanoparticles. These images also show small granular grains distributed throughout the surface without any cracks. The surface is composed of spherical grains of average size 60-80 nm.

The prepared thin films were irradiate with a 18W UV source in the spectral range 200-400nm at an intensity of 10 mW/cm² for two different times. The contact angle measurements were performed in air using the sessile drop method. The contact angle of a water droplet was measured on the surface before and after irradiation with UV light for 15 and 30 min.

Figures (4-7) and table (2) shows the results of measuring contact angle of water droplet on the pure TiO₂ surface. Most samples showed that the contact angle was decreased after 15 and 30 min of UV irradiation. The sample prepared after deposition time of 1 hour showed lower thickness and higher surface roughness. This factor has the most effective role on the degree of hydrophilicity. The prepared samples have high hydrophilicity that increased with increasing film thickness. The good superhydrophilic wetting and antifogging effects were attributed to the highly accessible pores developed on the TiO₂ coated slide, on which the water droplets can be sank. The hydrophilic behavior of the prepared samples depend on the exposure time required by the UV light to reach saturation point.

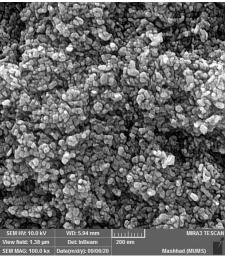


Fig. (3) FESEM images of pure TiO_2 films at two different scales (200 nm and 500 nm)

Table (2) Results of contact angle measurements of TiO_2 samples before and after 15 and 30 min of UV irradiation

Sample	Deposition Time (hour)	Contact angle before exposure to an UV source	Contact angle after exposure to an UV source (15 min)	Contact angle after exposure to an UV source (30 min)
a	1	67.2°	26.05°	16.56°
b	1:30	36.77°	64.78°	9.54°
С	2	80.07°	14.1°	38.16°
d	2:30	32.01°	45.47°	56.09°
e	3	49.19°	9.77°	34.56°

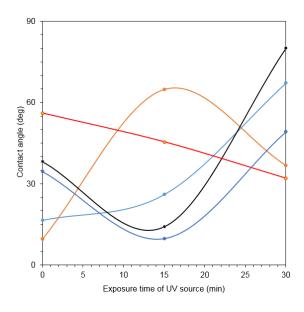
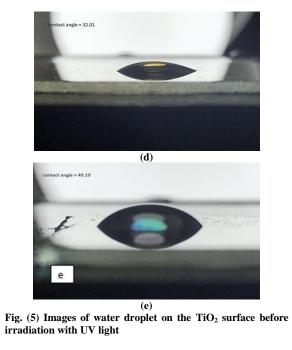




Fig. (4) Contact angles of a pure TiO₂ sample without and with 15 and 30 min. of UV irradiation min

(c)

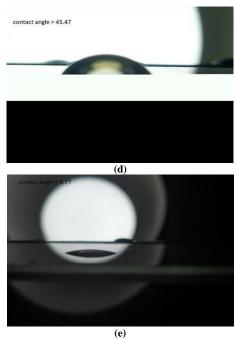
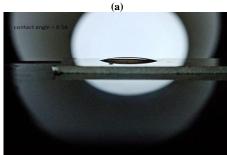
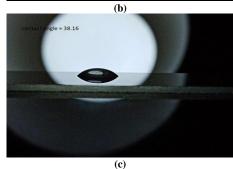
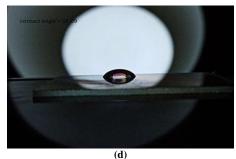





Fig. (6) Images of water droplet on the TiO_2 surface after 15 min of irradiation with UV light

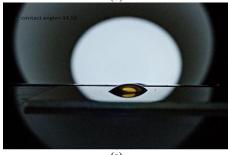


Fig. (7) Images of water droplet on the TiO_2 surface after 30 min of irradiation with UV light

4. Conclusions

DC reactive magnetron sputtering technique was used as a reliable and flexible technique to prepare highly-pure anatase TiO_2 thin films. The structure of TiO_2 films was tetragonal polycrystalline with a preferred orientation in the (101) direction. Optical measurements showed uniformity and good quality of the prepared films. All prepared samples showed that the contact angle of water droplet on the surface of TiO_2 thin films was decreased after 15 minutes of UV irradiation.

References

- [1] K. Hashimoto, H. Irie, and A. Fujishima, "TiO₂ photocatalysis: A historical overview and future prospects", Japanese J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap., 44(12) (2005) 8269–8285.
- [2] S.M. Hassan, A.I. Ahmed and M.A. Mannaa, "Preparation and characterization of SnO2 doped TiO_2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity", J. Sci. Adv. Mater. Dev., 4(3) (2019) 400–412.
- [3] A. Fujishima, T.N. Rao and D.A. Tryk, "Titanium dioxide photocatalysis," J. Photochem. Photobiol. C: Photochem. Rev., 1(1) (2000) 1–21.
- [4] J. Yu et al., "Preparation and characterization of super-hydrophilic porous TiO_2 coating films", Mater. Chem. Phys., 68(1-3) (2001) 253–259.
- [5] C.C. Chang, Z.M. Lin and L.P. Cheng, "Preparation of organic-inorganic hybridized dual-functional antifog/antireflection coatings on plastic substrates", J. Appl. Polym. Sci., 137(24) (2020), doi: 10.1002/app.48822.
- [6] K.-Y. Law and H. Zhao, "Surface Wetting", Springer (Switzerland, 2016), p. 142

- [7] K.L. Mittal (ed.), "Advances in Contact Angle, Wettability and Adhesion", vol. 3, Scrivener Publishing (USA, 2018), p. 147, 83.
- [8] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202(1) (1997) 1-8, 1997. [9] T. Kamada et al., "Structure and properties of
- [9] T. Kamada et al., "Structure and properties of silicon titanium oxide films prepared by plasma-enhanced chemical vapor deposition method", Japanese J. Appl. Phys., 30(12) (1991) 3594-3596.
- [10] M. Grodzicki et al., "Preparation of TiO_2 thin films by reactive evaporation method", published in 2009 Int. Students and Young Scientists Workshop "Photonics and Microsystems", pp. 25–27, doi: 10.1109/STYSW.2009.5470308.
- [11] L. Castaeda et al., "Spray pyrolysis deposition and characterization of titanium oxide thin films", Mater. Chem. Phys., 77(3) (2003) 938–944.
- [12] S.G. Ullattil and P. Periyat, "Sol-Gel Synthesis of Titanium Dioxide," Springer, Cham, (2017) pp. 271–283.
- [13] H.K. Jang et al., "Titanium oxide films on Si(100) deposited by e-beam evaporation," J. Vac. Sci. Technol. A: Vac. Surf. Film., 18(6) (2002) 2932-2936.
- [14] S.S. Al-Awadi et al., "Optical and structural properties of titanium dioxide papered by dc magneto-sputtering as a NO₂ gas sensor", Iraqi J. Sci., 61(10) (2020) 2562-2569.
- [15] E.A. Al-Oubidy and F.J. Al-Maliki, "Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique", Opt. Quantum Electron., 51(1) (2019) 23.
- [16] E.A. Al-Oubidy and F.J. Al-Maliki, "Effect of Gas Mixing Ratio on Energy Band Gap of Mixed-Phase Titanium Dioxide Nanostructures Prepared by Reactive Magnetron Sputtering Technique", Iraqi J. Appl. Phys., 14(4) (2018) 19-23.
- [17] O.A. Hammadi t al., "Operation Characteristics of a Closed-Field Unbalanced Dual-Magnetrons Plasma Sputtering System", Bulg. J. Phys., 41(1) (2014) 24-33.
- [18] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Fabrication of UV Photodetector from Nickel Oxide Nanoparticles Deposited on Silicon Substrate by Closed-Field Unbalanced Dual Magnetron Sputtering Techniques", Opt. Quantum Electron., 47(12) (2015) 3805-3813.
- [19] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Silicon Nitride Nanostructures Prepared by Reactive Sputtering Using Closed-Field Unbalanced Dual Magnetrons", Proc. IMechE, Part L, J. Mater.: Design and Applications, 231(5) (2017) 479-487.

- [20] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Fabrication and Characterization of UV Photodetectors Based on Silicon Nitride Nanostructures Prepared by Magnetron Sputtering", Proc. IMechE, Part N, J. Nanoeng. Nanosys., 230(1) (2016) 32-36.
- [21] M.A. Hameed and Z.M. Jabbar, "Optimization of Preparation Conditions to Control Structural Characteristics of Silicon Dioxide Nanostructures Prepared by Magnetron Plasma Sputtering", Silicon, 10(4) (2018) 1411-1418.
- [22] O.A. Hammadi and N.E. Naji, "Characterization of Polycrystalline Nickel Cobaltite Nanostructures Prepared by DC Plasma Magnetron Co-Sputtering for Gas Sensing Applications", Photon. Sens., 8(1) (2018) 43-47.
- [23] F.J. Al-Maliki and E.A. Al-Oubidy, "Effect of gas mixing ratio on structural characteristics of titanium dioxide nanostructures synthesized by DC reactive magnetron sputtering", Physica B: Cond. Matter, 555, 18-20 (2019).
- [24] F.J. Al-Maliki, O.A. Hammadi and E.A. Al-Oubidy, "Optimization of Rutile/Anatase Ratio in Titanium Dioxide Nanostructures prepared by DC Magnetron Sputtering Technique", Iraqi J. Sci., 60 (2019) 91-98.
- [25] O.A. Hammadi, F.J. Al-Maliki and E.A. Al-Oubidy, "Photocatalytic Activity of Nitrogen-Doped Titanium Dioxide Nanostructures Synthesized by DC Reactive Magnetron Sputtering Technique", Nonlinear Opt. Quantum Opt., 51(1-2) (2019) 67-78. [26] O.A. Hammadi, "Production of Nanopowders from Physical Vapor Deposited Films on Nonmetallic Substrates by Conjunctional Freezing-Assisted Ultrasonic Extraction Method", Proc. IMechE, Part N, J. Nanomater. Nanoeng. Nanosys., 232(4), 135-140 (2018).
- [27] O.A. Hammadi, "Effects of Extraction Parameters on Particle Size of Titanium Dioxide Nanopowders Prepared by Physical Vapor Deposition Technique", Plasmonics, 15 (2020),DOI: 10.1007/s11468-020-01205-8
- [28] M.I. Pratheepa and M. Lawrence, "X-Ray Diffraction Analyses of Titanium Dioxide Nanoparticles", Int. J. Sci. Res. Sci. Technol., 3(11) (2017) 83-88.
- [29] T.R. Esch, I. Gadaczek and T. Bredow, "Surface structures and thermodynamics of low-index of rutile, brookite and anatase A comparative DFT study", Appl. Surf. Sci., 288 (2014) 275-287.
- [30] B. Soediono, "Enhanced Performance and Functionality of Titanium Dioxide Papermaking Pigments with Controlled Morphology and Surface Coating", J. Chem. Inf. Model., 53(8) (1989) 160.

Ahmed S. Falah Khalid R. Jasim

Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad, IRAQ

Simulation Study on Current Gain Improvement at High Collector Current Densities for CuO/TiO₂ Heterostructure Transistors

An NPN Si/SiGe/SiGe Graded Heterojunction Bipolar Transistor (SiGe GHBT) has been compared with contemporary NPN Si/SiGe/Si Double Heterojunction Bipolar Transistor (SiGe DHBT) for current gain performance at high collector current densities, using a 2-dimensional MEDICI device simulator. The analysis predicts that the base-collector homojunction of the SiGe GHBT structure is responsible for improved current gain at high collector current density in comparison with the conventional SiGe DHBT and provides the option of operation at higher collector current densities.

Keywords: SiGe GHBT; Current gain; Retarding potential barrier; Linear tapering **Received:** 11 July 2020; **Revised:** 25 September 2020; **Accepted:** 1 October 2020

1. Introduction

Silicon-Germanium (SiGe) technology provides the option of bandgap engineering along with the compatibility with the present day Si process technology and hence provides the option of integrating the SiGe technology for advancement of present day device field. Extremely high cut-off frequency of 30 GHz and maximum frequency of oscillation of 50 GHz in the Si/SiGe/Si NPN double heterojunction bipolar transistors (DHBTs) had already been reported for use in mobile communication applications [1]. One important aspect of operation of SiGe devices is their requirement of operation at high current densities to achieve high cut-off frequency performance. Moreover, the scaling down of present day electronic devices forces the operation of these devices at very high collector current densities (>10⁵ Amp/cm²). Therefore, the operation performance of SiGe heterostructure transistors at high collector current densities is of prime concern for the microelectronics researchers and process engineers [2].

It has been already reported that the NPN Si/SiGe/Si DHBT structures exhibit rapid fall in the current gain at high collector current densities [3]. This rapid fall in the current gain leads to the fall in transistor efficiency and make it impractical for use at high collector current densities. The degraded current gain at high collector current densities in DHBT structures is attributed to the formation of retarding potential barrier for electrons at base-collector junction [4]. The velocity saturation of electrons in collector and the valence band offset for holes at base-collector junction leads to the formation of retarding potential barrier. The analysis

of NPN Si/SiGe/Si DHBT structure by Cottrel and Yu [3] shows the drop in the collector current density curve as the forward base-emitter bias exceeds approx. 0.77 volts, predicting a sharp fall off in current gain of the transistor above 0.77 volts. Therefore, some alternate HBT structures without valence band offset for holes at base-collector junction need to be evolved for improving the transistor current gain and efficiency at high collector currents [1].

In the present work, the conventional NPN SiGe DHBT structure with uniform 20 at% of Ge in base is simulated to supplement the earlier reported results on the formation of retarding potential barrier. These results are used as the basis for comparing the structures evolved to improve the current gain at high current densities. The objective has been to transform the base-collector heterojunction with the closest approximation to homojunction. Therefore, in the present work the GHBT structure with a uniform Ge at% in base region and a linearly graded germanium at% in collector has been chosen with a perfect homojunction at base-collector metallurgical junction [4]. The base-collector homojunction completely inhibits the formation of retarding potential barrier due to valence band offset and the grading of germanium ensures the strained behavior and stability of the SiGe layers [5]. A further advantage of choosing the NPN GHBT structure lies in the fact that the process of growing a box-type uniform SiGe base layer over a linearly graded SiGe collector region is more practical to achieve dislocation free strained base and collector SiGe layers [4].

A two-dimensional MEDICI device simulator, known for its authenticated results at the device level for SiGe HBT structures [6,7], has been used in the present analysis and the high doping and electric field models have been included. The performance of both the HBT structures for current gain is compared and authenticated by investigating the conduction band electron energy, net carrier concentration profiles, metallurgical junction, and dependence of collector current density on base-emitter bias voltage. A theoretical formulation has been provided to supplement the improved performance obtained in the proposed Si/SiGe/SiGe heterostructure in comparison with SiGe DHBT structure.

2. Theory

In NPN silicon BJT the finite electron concentration n_c in collector-base space charge layer is necessary to sustain the flow of collector current in the transistor. An expression relating the electron density n_c with the collector current density J_c for the constant drift velocity v_{dsat} condition is given as [8]:

$$J_c = q v_{dsat} n_c \tag{1}$$

At sufficiently high collector current density the high electron concentration in the space charge region of collector lowers the potential barrier at base-collector junction. This leads to the onset of Kirk phenomenon [8,9] where the base-collector junction shifts into the collector space-charge region resulting in the vertical widening of the effective neutral base region width. The total voltage across base-collector junction (V_{bctot}) is the sum of built in potential barrier at base-collector junction (V_{bi}) and the terminal base-collector voltage (V_{bct}) . At the onset of Kirk phenomenon, (at Kirk current density J_k), the electron density in base-collector space charge region, n_c (= n_k , electron density at start of Kirk effect), is related with the device parameters and V_{bctot} by the expression:

$$n_c = N_c + \left\{ \left(2\varepsilon \right) \frac{V_{bctot}}{qW_c^2} \right\}$$
 (2)

where N_c is the collector-doping concentration, ε is the dielectric constant for Si, q is the electronic charge and W_c is the collector width as now whole collector width corresponds to space charge region.

In Si BJT, at the onset of Kirk phenomenon, holes are injected into the collector from the base to compensate the electron charge in collector, resulting in the formation of the current induced base. However, for SiGe DHBTs having a sizable alloy mole fraction, there is a valence band discontinuity for holes at base-collector junction. This valence band discontinuity suppresses the hole injection into the collector as n_c exceeds n_k . Eventually, there will be an accumulation of mobile electrons in collector due to velocity saturation and an accumulation of holes in base due to valence band

offset at base-collector junction. The combination of these mobile electrons together with localized holes form a dipole layer and in turn give rise to an electric field E_0 . A further increase in the collector current density will consequently increase the dipole strength and increases the electric field E_0 . The presence of the electric field E_0 at base-collector heterojunction gives rise to a retarding potential barrier (V_{bp}) in conduction band, which would oppose the electrons flowing from emitter to collector through base. An increased electron density in the base at base-collector junction $n_{(Wb)}$ is now required to support and maintain the electron density n_c and collector current density J_c . The electron density n_c in base-collector space charge region for collector density J_c , in SiGe DHBT derived from the basic Poisson's equation is:

$$n_c = N_c + \left\{ \left(2\varepsilon \right) \frac{V_{bctot} + E_0 W_c}{qW_c^2} \right\}$$
 (3)

The electron density in base at base-collector junction $n_{(Wb)}$ required to maintain the n_c inside base-collector space charge region is simply given by using current continuity and Boltzmann statistics across the retarding potential barrier V_{bp} :

$$n_{(Wb)} = n_c \exp\left(\frac{qV_{bp}}{KT}\right) \tag{4}$$

where $KT/q = V_T$ is the thermal voltage

The retarding potential barrier V_{bp} for electrons can be expressed as:

$$V_{bp} = \Delta E_{v}$$

+
$$KT \ln \left[\frac{J_c}{q v_{dsat} N_b} - \frac{N_c}{N_b} - \frac{2 \varepsilon (V_{bctot})}{q N_b W_c^2} \right]$$
 (5)

where ΔE_{ν} is the valence band discontinuity for holes and N_b is the neutral base width.

Solving Eq. (3), (4) and (5) for a uniformly doped base gives the effect of bias dependent retarding potential barrier V_{bp} and base-emitter biasing V_{be} on the collector current density J_c as:

$$J_{c} = \left[\left(\frac{qD_{n}n_{io}^{2}}{W_{b}N_{b}} \right) \left(\frac{e^{\left(qV_{be} + \Delta E_{v} - V_{bp} \right) / KT}}{1 + \frac{D_{n}e^{\left(V_{bp} / KT \right)}}{W_{b}V_{dyat}}} \right) \right]$$
(6)

where, n_{i0} is the intrinsic carrier concentration. The modified value of electron density in base at emitter-base junction $n_{(0)}$ in term of V_{bp} is expressed as:

$$n_{(0)} = \left[\left(n_c \left(v_{dsat} W_b \right) \right) + \left(n_c \exp \left(\frac{q V_{bp}}{KT} \right) \right) \right] (7)$$

where $[n_c (v_{dsat} W_b)/D_{nb}]$ is the electron density in the base at the base-emitter junction corresponding to the electron density in base-collector space-charge region n_c

The second term in Eq. (7), $[n_c \{exp (qV_{bp}/KT)\}]$ is the electron density in base at the base-emitter junction as a result of increased electron concentration in base at base-collector junction because of the retarding potential barrier at base-collector junction.

The relation of the effective band offset δE_{ν} and valence band discontinuity ΔE_{ν} with $n_{(0)}$ and V_{be} (for a specific J_c) is expressed as:

$$V_{be} = \begin{bmatrix} V_{t} \ln \left\{ \left(\frac{n_{(0)}^{2}}{n_{i0}^{2}} \right) + \left(\frac{n_{(0)}N_{b}}{n_{i0}^{2}} \right) \right\} \\ -\frac{\delta(E_{v})}{q} \end{bmatrix}$$
(8)

The substitution of the expression for $n_{(0)}$ from the Eq. (7) in Eq. (8) predicts the necessity for an increase in V_{be} to account for the increase in $n_{(0)}$ required to sustain the collector current density J_c . This requirement of increase in V_{be} for a given collector current density J_c will be reflected as a fall in the current gain of the DHBT structure. This prediction is consistent with the discussion of Eq. (6) where an increase in retarding potential barrier V_{bp} at high collector current density predicts a fall in the DHBT collector current density J_c and current gain.

The analysis of SiGe DHBT illustrates the formation of retarding potential barrier at base-collector junction due to valence band offset for holes. The theory also predicts a fall in the current gain at high collector current density as a consequence of this retarding potential V_{bp} . Whereas, the proposed GHBT structure with uniform Ge profile in base and grading of Ge at% in collector avoids the retarding potential barrier for electrons at base collector homojunction. Consequently, this structure promises an improved current gain at high collector current density in comparison with SiGe DHBT structure.

3. Simulation Results for SiGe DHBT and GHBT Structures

The current gain performance of the NPN Si/SiGe/Si DHBT and proposed NPN Si/SiGe/SiGe heterostructure is compared for identical device dimensions, doping densities and bias conditions. The surface emitter doping of 5×10^{19} cm⁻³ and its thickness W_{e1} of 0.2 μ m is chosen to provide ohmic contact. The emitter doping of 1×10^{19} cm⁻³ and its thickness W_{e2} of 0.1 μ m is selected to lower the emitter-base. The base thickness W_b of 0.05 μ m with a uniform base doping of 8×10^{18} cm⁻³ is chosen in both the structures. The collector doping of 1×10^{17} cm⁻³ and thickness W_c of 0.45 μ m have been chosen in both the structures.

The germanium profile in different regions of Si/SiGe/Si DHBT and Si/SiGe/SiGe HBT structures is shown in Fig 1. An optimized mole fraction of germanium has been chosen to retain the strained behavior and stability of SiGe regions [5]. A uniform 20 at% Ge has been chosen in the base of conventional Si/SiGe/Si Double HBT (DHBT) structure, whereas its collector does not contain any germanium mole fraction. The base-collector homojunction, in the proposed Si/SiGe/SiGe Graded HBT (GHBT) structure has been ensured by choosing a uniform 20 at% Ge in base and tapering it linearly to zero at% Ge at the collector ohmic contact.

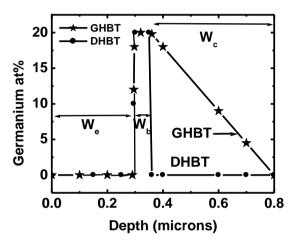


Fig. (1) Ge profile in the emitter, base and collector for the SiGe DHBT and GHBT. W_e , W_b , and W_c are the total emitter, base, and collector width, respectively in the HBTs.

The chosen operating conditions of SiGe DHBT and GHBT structure ensures the performance evaluation in the high collector current density region (>10⁵ Amp/cm²). The simulation results on conduction band electron energy for both the structures include the influence of valence band offset for holes and bandgap narrowing due to the heavily doped base. The electron energy profile shown in Fig. 2, for the collector current density of 9.22×10^5 A-cm⁻², predict the total retarding potential barrier V_{bp} of approx. 0.09 eV for the conduction band electrons at the base-collector heterojunction in the SiGe DHBT structure. The valence band offset for holes at base-collector heterojunction is observed to contribute 0.06 eV in the total retarding potential barrier in the DHBT structure. This is obtained by excluding the influence of heavy doping effect on band gap narrowing in the base. The simulated result is consistent with the retarding potential barrier of approx. 0.058 eV obtained by solving Eq. (5) for SiGe DHBT accounting only for the valence band offset for holes. Whereas, the formation of such a retarding potential barrier (due to valence band offset for holes) is prohibited by the base-collector homojunction in the GHBT structure. Therefore the

simulation results shown in Fig. 2, for the collector current density of 1.6×10^6 A-cm⁻² in the GHBT structure, exhibits a small potential barrier of 0.03 eV, which is solely attributed to the high doping in the base. The retarding potential barrier of 0.06 eV in the DHBT structure leads to accumulation of mobile electrons at base-collector heterojunction.

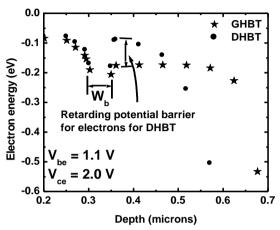


Fig. (2) Conduction band electron energy E_C for SiGe DHBT and GHBT including the effect of valence band offset and band gap narrowing. W_b is the base width

The variation of net carrier concentration with the vertical depth of the SiGe DHBT and SiGe GHBT structures for the chosen bias conditions is shown in Fig. 3. A net carrier concentration of 8.11 \times 10¹⁹ and 3.93 \times 10¹⁹ cm⁻³ is obtained in the base of DHBT structure at emitter-base and base-collector junctions, respectively. This corresponds to an electron concentration of 4.36×10^{19} cm⁻³ and 2.92 \times 10¹⁹ cm⁻³ in the base of DHBT structure at the corresponding metallurgical junctions. Whereas, a lower net carrier concentration of 6.34×10^{18} cm⁻³, which corresponds to an electron concentration of 1.86×10^{19} cm⁻³, is obtained, for a higher collector current density of 1.6×10^6 A-cm⁻² at base-collector junction in the base of GHBT structure. The simulation results predict an electron concentration of 3.07×10^{19} cm⁻³ at the emitter-base junction in GHBT structure.

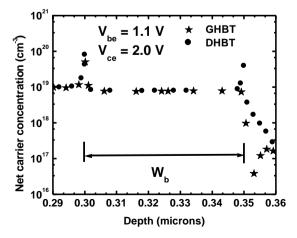


Fig. (3) Net carrier concentration in SiGe DHBT and GHBT at collector-emitter voltage V_{ce} of 2 Volts and base-emitter voltage V_{be} of 1.1 Volts. W_b is the base width

This increase in electron concentration at both the metallurgical junctions in the base of DHBT forces the requirement of an associated increase in base-emitter biasing voltage V_{be} .

The dependence of collector current density J_c on the base-emitter bias voltage V_{be} , for the DHBT and GHBT structures, is shown in Fig. 4. The results predict the requirement of base-emitter bias voltage of 1.1 volts for the DHBT and 0.97 volts for the GHBT structure to sustain the collector current density of 9.22×10^5 A-cm⁻². The base-emitter bias voltage for the GHBT structure is observed to increase linearly with the collector current density. Whereas, the collector current density for the DHBT structure approximately saturates above the baseemitter bias voltage of 0.98 volt. Therefore, at higher collector current densities the DHBT structure needs higher base-emitter bias voltage in comparison with GHBT structure, for sustaining the same collector current density, which will adversely influence the current gain of DHBT in comparison with GHBT structure.

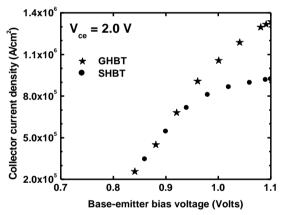


Fig. (4) Dependence of collector current density J_c on baseemitter bias voltage V_{bc}

The dependence of current gain on the collector current density for the DHBT and the GHBT structure is shown in Fig. 5. The monotonically decaying behavior of current gain in both the structures for the collector current densities less than 4.0 x 10⁵ A/cm² is attributed to the Kirk effect [5] and high-level injection of minority carriers in the base. At higher collector current densities (>4.0 x 10⁵ A/cm²), the current gain in the GHBT structure falls to 72% of its initial value for twofold change in the current density. Whereas, the current gain in the DHBT structure falls to 10% for twofold change in the collector current density. Therefore, the DHBT shows a sharp fall-off in the current gain in comparison with GHBT structure as the collector current density increases. The results are consistent with fall in the current gain in DHBT structure, predicted by Eq. (6), due to the formation of retarding potential barrier at base-collector junction in the DHBT structure. The results establish superior current gain performance of the GHBT structure in comparison with the DHBT device. Although the results presented in the present work are for the preselected doping profiles and physical parameters of the device but the phenomena of better performance of the GHBT structure over contemporary DHBT structures will be consistent with other device configurations and doping profiles.

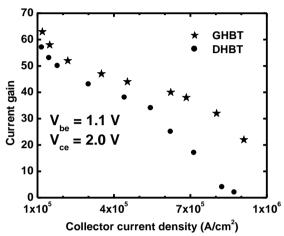


Fig. (5) Current gain Vs. collector current density plot for NPN SiGe DHBT and GHBT

4. Conclusions

An NPN SiGe GHBT structure with uniform 20 at% germanium in the base and tapering it linearly to zero at% Ge at the collector ohmic contact is proposed to improve the current gain performance of the SiGe HBTs at high collector current densities. The base-collector homojunction inhibits the formation of retarding potential barrier due to absence of valence band offset for holes at basecollector metallurgical junction and 20 at% of germanium and its tapering ensures the strained behavior and stability of the SiGe layers. The absence of retarding potential barrier in SiGe GHBT is observed to provide better current gain performance at high collector current densities in comparison with DHBT structure. A theoretical model for SiGe DHBT has been developed to supplement the simulation results for current gain dependence on the physical parameters and device structure. A comparison of conduction band electron

energy, net carrier concentration profile and dependence of collector current density on the base emitter voltage has been provided for the SiGe HBT structures. The theoretical formulation and the simulated results on the current gain performance establish the superiority of the GHBT structure in comparison with the DHBT device configuration at high collector current densities.

References

- [1] A. Schuppen, "SiGe-HBTs for mobile communication", *Solid State Electron.*, 43 (1999) 1373-1381.
- [2] O.A. Hammadi, F.J. Al-Maliki and E.A. Al-Oubidy, "Photocatalytic Activity of Nitrogen-Doped Titanium Dioxide Nanostructures Synthesized by DC Reactive Magnetron Sputtering Technique", Nonl. Opt. Quant. Opt., 51(1/2) (2019) 67-78.
- [3] Z. Yu, P.E. Cottrell and R.W. Dutton, "Modeling and simulation of high-level injection behavior in double heterojunction bipolar transistors," *IEEE Bipolar Circuits and Technology Meeting*, 8.5 (1990) 192-194.
- [4] R.A. Ismail et al., "Full characterization at 904 nm of large area Si p-n junction photodetectors produced by LID technique", Euro. Phys. J. Appl. Phys., 38 (2007) 197-201.
- [5] R. People and J.C. Bean, "Calculation of critical layer thickness versus lattice mismatch for Ge_xSi_{1-x}/Si strained-layer heterostructure", *Appl. Phys. Lett.*, 47(3) (1985) 322-324.
- [6] Md.R Hashim, R.F Lever and P. Ashburn, "2D simulation of the effects of transient enhanced boron out-diffusion from base of SiGe HBT due to an extrinsic base implant", *Solid State Electron.*, 43 (1999) 131-140.
- [7] O.A. Hammadi, "Production of nanopowders from physical vapor deposited films on nonmetallic substrates by conjunctional freezing-assisted ultrasonic extraction method", Proc IMechE Part N: J Nanomater. Nanoeng. Nanosys., 232(4) (2018) 135-140.
- [8] D.J. Roulston, "Bipolar Semiconductor Devices", McGraw-Hill (NY, 1990).
- [9] W.N. Raja et al., "Magnetic Field Distribution of Closed-Field Unbalanced Dual Magnetrons Employed in Plasma Sputtering Systems", Iraqi J. Appl. Phys., 12(3) (2016) 35-42.

Visit <u>csmantech.orq</u> for link to submit a 1-2 page abstract

Abstracts should clearly state:

- The purpose of the work How CS Manufacturing
- Technology was used or advanced
- Specific results & how they were achieved with supporting data

Abstract formatting guidelines located at: csmantech.org/authorkit/

Conference Chair Thorsten Saeger chairman@csmantech.org

Technical Program Chair Peter Ersland tpcchair@csmantech.org In view of the evolving situation with COVID-19, the format of the conference may change. Options being evaluated are:

- In-person: traditional conference format if health and travel issues are resolved
- Virtual: Online conference format
- Hybrid: Combined in-person/virtual format for speakers and attendees

Abstracts are being accepted now; the conference Executive Committee will finalize the conference format by March 5th, 2021

Papers Are Solicited on Manufacturing-Related Topics in: GaN, GaAs, InP, SiC, ultra-wide bandgap semiconductors, Sb compounds, SiGe, and other related materials

- CS Applications: RF, Power, and Optoelectronic Devices; 5G Devices and Circuits; Automotive sensors; SAW/BAW Filters
- C\$ Processing: Wafer & Device Processing; Equipment; Process Control & Improvement; SixSigma@, CPI, DFM
- CS Integration: Packaging & Heterogeneous Integration
- CS Evaluation: Test, Yield, Reliability & Failure Analysis
- CS General: Business/Market Outlook; Epitaxy & Materials

Co-located events:

Reliability Of Compound Semiconductors Workshop May 24th

Mohammed A. Hameed Saja H. Faisal Reem H. Turki

Department of Physics, College of Science, University of Baghdad,

Baghdad, IRAQ

Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique

In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO₂). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.

Keywords: Magnetron sputtering; Reactive sputtering; Multilayer structures; Nanostructures **Received:** 21 November 2020; **Revised:** 22 December 2020; **Accepted:** 29 December 2020

1. Introduction

Several decades ago, the multilayer structures have attracted the research interests due to their advantages and features for both research and industrial purposes. These structures have mostly presented a mixture of advantages of all constituents included in the multilayer structure. However, they may show new features and characteristics not observed for the constituents individually [1-4]. This can be reasonably observed in spectroscopic studies as the multilayer structures can exhibit absorption higher than the individual absorption characteristics of their constituents in addition to new absorption peaks or edges in the regions of weak absorption [1].

Drastic developments were seen in the physics and technology of photonics and optoelectronics devices such as photodetectors, solar cells, gas sensors, photocatalysts, etc. [5-9]. Such devices represent the skeleton of the modern technologies, therefore, the research works are intensively focused on development and enhancement of their characteristics and performances [1,3,10]. Recently, nanotechnology has added more routes to develop them with new properties and characteristics [4].

Thin film deposition techniques made it easy to fabricate multilayer structures by consequent deposition of layers from different materials but most of these techniques may include a chemical reaction or physical changes in the properties of the lower layer when a new layer of different materials is deposited upon [3]. This problem may have negative effects on the outcome expected from a multilayer structure. Among all physical vapor deposition (PVD) methods and techniques, the reactive

magnetron sputtering shows very good features in fabrication multilayer structures as no reactions that may change the properties of the lower layers are included [11,12]. As well, no mechanical or thermal processes exist to affect negatively the grown layers [13,14]. Therefore, high-quality multilayer structures can be successfully fabricated by reactive magnetron sputtering in addition to the advantages of low-cost large-scale production, reliability and reproducibility [15-18].

In this work, multilayer structures were fabricated from nickel oxide and titanium dioxide thin films prepared by dc reactive magnetron sputtering technique. The structural characteristics of the fabricated structures were introduced and analyzed.

2. Experiment

Highly-pure sheets of titanium (99.99%) and nickel (99.99%) were used as sputtering targets. The target was maintained inside the deposition chamber on the cathode. Pure oxygen was used as reactive gas required to form the metal oxides. The quartz substrates on which the metal oxide thin films are to be deposited were carefully cleaned and then put on the surface of the anode. The temperature of the anode (and the substrate as well) could be controlled and a thermocouple was used to measure it. More details on the magnetron sputtering system used in this work and shown in Fig. (1) can be found elsewhere [19-23].

Fig. (1) A photograph of the dc reactive magnetron sputtering system used in this work

The deposition chamber was first evacuated down to 10^{-3} mbar before filled with the gas mixture of argon and oxygen at a pressure of 0.1 mbar. The plasma required for sputtering was generated by the electric discharge of argon. Electrical power was provided by a high-voltage dc power supply. Several parameters of sputtering system, such as interelectrode distance, deposition time, substrate temperature, total gas pressure and Ar:O₂ ratio, could be varied to determine their effects on the deposition process.

The fabricated multilayer structures were characterized by the Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX) and atomic force microscopy (AFM).

3. Results and Discussion

Figure (2) shows the FTIR spectrum of the multilayer sample prepared using Ar:O2 gas mixture of 1:1 after deposition time of two hours. All peaks assigned for the vibration bands of M-O bonds were seen as shown in table (1). These bonds are distinctly recognized as both materials are metal oxide (NiO and TiO₂). The band assigned at 1064 cm⁻¹ is ascribed to the vibration of the Ni-O bond [24] while three bands are observed for the TiO₂ sample at 409, 447 and 667 cm⁻¹, which ascribed to the vibration modes of the triatomic molecule (TiO2) in addition to the peak assigned at 709 cm⁻¹, which is ascribed to the bridging stretching mode of Ti-O-Ti [25]. No bands ascribed to compounds other than O-H were observed, which confirms the structural purity of both types of samples (NiO and TiO₂) [26]. However, the O-H bands are unavoidable due to the adsorption of water from the environment. When compared to the individual FTIR spectra of NiO and TiO₂ samples prepared by the same technique, it is confirmed that no other phases were formed (e.g., Ni₂O₃, NiO₂, TiO or Ti₂O₃) nor new compound, such NiTiO₃ [27]. This is significant evidence for the advantage of reactive magnetron sputtering in fabrication of highly-pure multilayer structures.

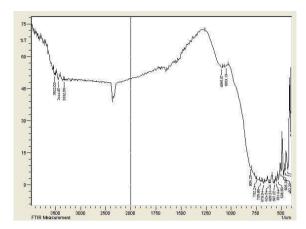
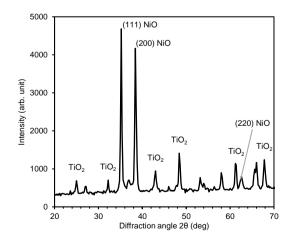
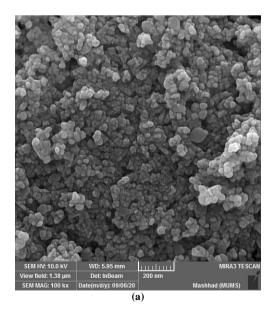


Fig. (3) The FTIR spectrum of the multilayer NiO/TiO₂ structure prepared in this work using 1:1 gas mixture after deposition time of 2 hours

Table (1) Vibration bands observed on the FTIR spectrum of the fabricated multilayer structure

Wavenumber (cm ⁻¹)	Assigned bond	Material
409	Ti-O-Ti	Bending
447	Ti-O	Symmetric stretching
667	Ti-O	Asymmetric stretching
709	Ti-O-Ti	Bridging
1064	Ni-O	Stretching

Figure (3) shows the XRD pattern of the multilayer structure prepared in this work using Ar:O₂ gas mixture of 1:1 after deposition time of two hours. As seen, two sharp and intensive peaks are observed at 2θ of 35.22° and 38.46°, which corresponding to the crystal planes of (111) and (200), respectively, of NiO. The peak assigned at 62.52° is belonging to the (220) crystal plane of NiO as well. Other lower peaks are all belonging to crystal planes TiO₂ [28-30]. As previously confirmed by the FTIR result, no peaks corresponding to reflection from crystal planes belonging to other compounds were observed. Table (2) shows the calculations of grain size based on the XRD results.

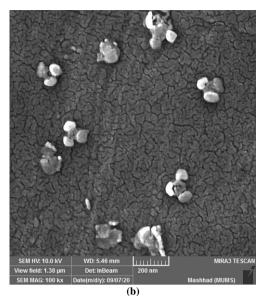

Fig. (2) XRD pattern of the NiO/TiO₂ multilayer structure prepared in this work using 1:1 gas mixture after deposition time of 2 hours

Table (2) Calculations of grain size based on the XRD results

2θ	d (Å)	D (nm)	Material
25.0162	3.55669	15.413	TiO ₂
32.2164	2.77633	13.483	TiO ₂
35.2254	2.54576	12.410	NiO
36.8363	2.43805	8.231	TiO ₂
38.4639	2.33854	10.469	NiO
42.9806	2.10267	8.112	TiO ₂
48.4665	1.87671	8.667	TiO ₂
53.2587	1.71859	6.964	TiO ₂
58.0355	1.58798	7.060	TiO ₂
61.2700	1.51168	7.005	TiO ₂
62.5275	1.48426	4.709	NiO
65.7933	1.41827	3.635	TiO ₂
67.7970	1.38115	5.696	TiO ₂

The formation of nanostructures in the prepared samples was identified by the SEM results as shown in Fig. (4). A minimum particle size of about 40 nm can be seen while no large aggregation is observed. As compared to the SEM results of NiO and TiO₂ samples individually, the surface morphology of the multilayer sample is similar to that of the TiO₂ sample. This can be attributed to the larger particle size of TiO₂ particles as the NiO nanoparticles of lower sizes are deposited on the vacancies among the larger particles. The spherical shape of NiO nanoparticles seen in Fig. (3a) approximately disappeared in the multilayer sample. Instead, larger particles appear with a possibility to be a combination of NiO nanoparticles attached to TiO₂ nanoparticles. If this is the situation, then the assumption of formation of nano-heterojunctions can be reasonably possible. Such assumption encourages to synthesize nanophotonics and nano-devices based on the optoelectronic characteristics such heterojunctions.

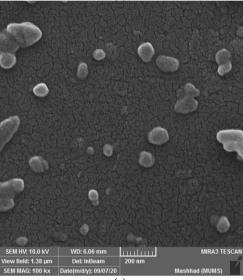


Fig. (3) The SEM image of the NiO sample (a), TiO2 sample (b) and multilayer NiO/TiO₂ structure (c) prepared in this work using 1:1 gas mixture after deposition time of 2 hours

With assumption of forming heterojunctions from NiO and TiO2 nanoparticles, and considering the concentrations of solid species that may reach up to 10^{18} cm⁻³, the formation of up to 10¹² nano-heterojunctions is very likely. When compared to conventional thin film structures (NiO/TiO₂), these multilayer structures are much more efficient by about 1000%. Therefore, the tiny contributions of such nano-devices can produce a huge amount of outcome (energy, current, voltage, etc.). Accordingly, a drastic development in their applications can be expected with further control of the nanoparticle size and distribution [31-35].

The elemental constitution of each sample (NiO and TiO₂) as well as the fabricated multilayer structure was individually characterized by EDX, as shown in Fig. (4). Both structures can be considered highly pure as no traces for other elements other than Ni, Ti and O were seen. In addition, the multilayer

structure has confirmed that its formation processes did not include any opportunity for other elements to be exist in the final sample as dopants or contaminants. This result additionally supports the advantage of reactive magnetron sputtering technique in production of highly-pure nanostructures.

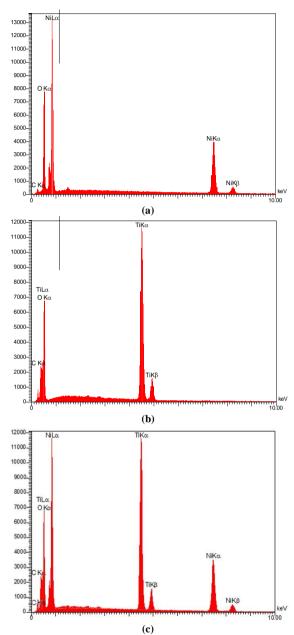


Fig. (4) Results of EDX of the NiO (a), TiO_2 (b) and multilayer (c) samples prepared in this work using 1:1 gas mixture after deposition time of 2 hours

Multilayer structures – like those fabricated in this work – can be successfully employed in photonics, optoelectronics, spectroscopic and other applications including an interaction between the electromagnetic radiation and matter. As well, gas sensors for more than one gas can be fabricated from such structures [36,37]. Therefore, the surface roughness is an important parameters to make such interaction much more efficient. The topography of

the synthesized multilayer structures was introduced by the AFM as shown in Fig. (5) showing the 2D and 3D images of their surfaces. The average roughness was determined to be 16.7 nm while the root-mean-square roughness was about 19.5 nm. These surfaces can also be considered highly homogeneous with a surface skewness of about 0.0224. It is known that lower values of surface skewness correspond to rougher surfaces while higher values (up to ∞) correspond to smoother surfaces [?]. These values reflect the high surface area that can be available for the interaction between these nano-surfaces and electromagnetic radiation or gas species to be sensed.

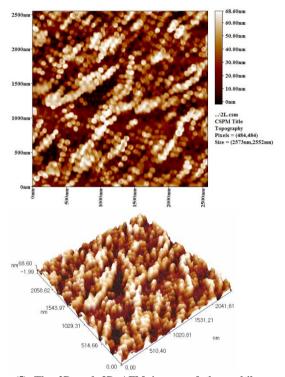


Fig. (5) The 2D and 3D AFM images of the multilayer NiO/TiO_2 structure prepared in this work using 1:1 gas mixture after deposition time of 2 hours

4. Conclusion

In concluding remarks, the fabrication and characterization of multilayer nanostructures from NiO and TiO_2 by dc reactive magnetron sputtering technique were presented. These nanostructures showed high structural purity with no imperfections or degradation when compared to the nanostructures of NiO and TiO_2 individually as well as to the thin film NiO/ TiO_2 structures. These results encourage to employ such multilayer structures in many photonics and optoelectronics applications due to their advantages as low-cost highly-pure nano-surfaces.

References

[1] M. Ohring, "The Materials Science of Thin Films", Academic Press (London, 1992), p. 310.

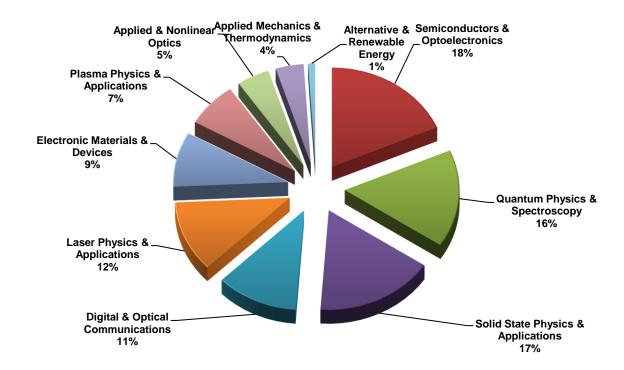
- [2] E. Kaxiras, "Atomic and Electronic Structure of Solids", Cambridge University Press (NY, 2003), p. 342.
- [3] B. Bhushan, "Springer Handbook of Nanotechnology", Springer-Verlag (Berlin, 2004), p. 1.
- [4] B.S.R. Reddy, "Advances in Diverse Industrial Applications of Nanocomposites", InTech (2011), p. 57.
- [5] W.A. Goddard et al., "Handbook of Nanoscience, Engineering and Tehnology", CRC Press (FL, 2003), p. 65
- [6] O.A. Hamadi, B.A.M. Bader and A.K. Yousif, "Electrical Characteristics of Silicon p-n Junction Solar Cells Produced by Plasma-Assisted Matrix Etching Technique", Eng. Technol. J., 28 (2008) 995-1001.
- [7] A.A.K. Hadi and O.A. Hamadi, "Optoelectronic Characteristics of As-doped Silicon Photodetectors Produced by LID Technique", Iraqi J. Appl. Phys. Lett., 1(2) (2008) 23-26.
- [8] A.J. Mohammad, A.M. Mousa and K.H. Hussain, "Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis Technique", Iraqi J. Appl. Phys., 4(1) (2008) 31-35.
- [9] A.K. Yousif and O.A. Hamadi, "Plasma-Induced Etching of Silicon Surfaces", Bulg. J. Phys., 35(3) (2008) 191-197.
- [10] E.A. Al-Oubidy and F.J. Al-Maliki, "Effect of Gas Mixing Ratio on Energy Band Gap of Mixed-Phase Titanium Dioxide Nanostructures Prepared by Reactive Magnetron Sputtering Technique", Iraqi J. Appl. Phys., 14(4), 19-23 (2018).
- [11] O.A. Hamadi, "Effect of Annealing on the Electrical Characteristics of CdO-Si Heterostructure Produced by Plasma-Induced Bonding Technique", Iraqi J. Appl. Phys., 4(3) (2008) 34-37.
- [12] G.H. Mohammed, "Characterization of (CdO)_{1-x}(ZnO)_x Thin Films Prepared by Pulsed-Laser Deposition for Solar Cell Applications", Iraqi J. Appl. Phys., 11(3) (2015) 3-7.
- [13] O.A. Hammadi and N.E. Naji, "Electrical and Spectral Characterization of CdS/Si Heterojunction Prepared by Plasma-Induced Bonding", Opt. Quant. Electron., 48(8) (2016) 375.
- [14] G.M.A. Youssef, A.M.H. El-Naggar and A.S. Megazy, "Characterization of E-Mode InZnO Thin Film Transistors Produced by DC Sputtering Technique", Iraqi J. Appl. Phys. Lett., L3(1) (2008) 19-22.
- [15] O.A. Hamadi and K.Z. Yahiya, "Optical and electrical properties of selenium-antimony heterojunction formed on silicon substrate", Sharjah Univ. J. Pure Appl. Sci. (UoS J PAS), 4(2) (2007) 1-11.

- [16] H. Afifi, M. Abdel-Naby, S. El-Hefnawie, A. Eliewa and N. Ahmad, "Optical and Electrical Properties of Zinc Oxide Films Prepared by Spray Pyrolysis", Iraqi J. Appl. Phys., 6(4) (2006) 23-28.
- [17] O.A. Hamadi, "Characteristics of CdO-Si Heterostructure Produced by Plasma-Induced Bonding Technique", Proc. IMechE, Part L, J. Mater.: Design and Applications, 222 (2008) 65-71.
- [18] J. Cheng et al., "Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures", Adv. Opt. Mater., 7(1) (2019) 1800441.
- [19] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, B.T. Chiad, "Operation Characteristics of a Closed-Field Unbalanced Dual-Magnetrons Plasma Sputtering System", Bulg. J. Phys., 41(1) (2014) 24-33.
- [20] O.A. Hammadi, W.N. Raja, M.A. Saleh and W.A. Altun, "Employment of Magnetron to Enhance Langmuir Probe Characteristics of Argon Glow Discharge Plasma in Sputtering System", Iraqi J. Appl. Phys., 12(4) (2016) 19-28.
- [21] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Fabrication and Characterization of UV Photodetectors Based on Silicon Nitride Nanostructures Prepared by Magnetron Sputtering", Proc. IMechE, Part N, J. Nanoeng. Nanosys., 230(1) (2016) 32-36.
- [22] M.A. Hameed and Z.M. Jabbar, "Optimization of Preparation Conditions to Control Structural Characteristics of Silicon Dioxide Nanostructures Prepared by Magnetron Plasma Sputtering", Silicon, 10(4) (2018) 1411-1418.
- [23] F.J. Al-Maliki and E.A. Al-Oubidy, "Effect of gas mixing ratio on structural characteristics of titanium dioxide nanostructures synthesized by DC reactive magnetron sputtering", Physica B: Cond. Matter, 555, 18-20 (2019).
- [24] N.N. Greenwood and E.J.F. Ross, "Index of Vibrational Spectra of Inorganic and Organometallic Compounds", vol. I, Butterworth Group (London), p. 326, 328 (1960).
- [25] N.N. Greenwood and E.J.F. Ross, "Index of Vibrational Spectra of Inorganic and Organometallic Compounds", vol. II, Butterworth Group (London), p. 457 (1963).
- [26] N.N. Greenwood and E.J.F. Ross, "Index of Vibrational Spectra of Inorganic and Organometallic Compounds", vol. III, Butterworth Group (London), p. 800, 1078 (1966).
- [27] V.P. Tolstoy, I.V. Chernyshova and V.A. Skryshevsky, "Handbook of Infrared Spectroscopy of Ultrathin Films", John Wiley & Sons, Inc. (NJ), p. 435 (2003).

- [28] F.J. Al-Maliki, O.A. Hammadi and E.A. Al-Oubidy, "Optimization of Rutile/Anatase Ratio in Titanium Dioxide Nanostructures prepared by DC Magnetron Sputtering Technique", Iraqi J. Sci., 60 (Special Issue), 91-98 (2019).
- [29] S.H. Faisal and M.H. Hameed, "Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering", Iraqi J. Appl. Phys., 16(3) (2020) 27-32.
- [30] R.H. Turki and M.H. Hameed, "Spectral and Electrical Characteristics of Nanostructured NiO/TiO₂ Heterojunction Fabricated by DC Reactive Magnetron Sputtering", Iraqi J. Appl. Phys., 16(3) (2020) 39-42.
- [31] O.A. Hammadi, "Effects of Extraction Parameters on Particle Size of Titanium Dioxide Nanopowders Prepared by Physical Vapor Deposition Technique", Plasmonics, 15 (2020),DOI: 10.1007/s11468-020-01205-8
- [32] O.A. Hammadi, "Photovoltaic Properties of Thermally-Grown Selenium-Doped Silicon Photodiodes for Infrared Detection Applications", Photon. Sens., 5(2) (2015) 152-158.
- [33] O.A. Hammadi, "Production of Nanopowders from Physical Vapor Deposited Films on Nonmetallic Substrates by Conjunctional Freezing-Assisted Ultrasonic Extraction Method", Proc. IMechE, Part N, J. Nanomater. Nanoeng. Nanosys., 232(4), 135-140 (2018).

- [34] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Fabrication of UV Photodetector from Nickel Oxide Nanoparticles Deposited on Silicon Substrate by Closed-Field Unbalanced Dual Magnetron Sputtering Techniques", Opt. Quantum Electron., 47(12) (2015) 3805-3813.
- [35] O.A. Hammadi, M.K. Khalaf, F.J. Kadhim, "Silicon Nitride Nanostructures Prepared by Reactive Sputtering Using Closed-Field Unbalanced Dual Magnetrons", Proc. IMechE, Part L, J. Mater.: Design and Applications, 231(5) (2017) 479-485.
- [36] R.A. Ismail, O.A. Abdulrazaq, A.A. Hadi and O.A. Hamadi, "Characterization of Si p-n Photodetectors Produced by Laser-Induced Diffusion", Int. J. Mod. Phys., 19(31) (2005) 4619-4628.
- [37] R.A. Ismail, O.A. Abdulrazaq, A.A. Hadi and O.A. Hamadi, "Full Characterization at 904nm of Si p-n Junction Photodetectors Produced by LID Technique", Euro. Phys. J.: Appl. Phys., 38 (2007) 197-201.
- [38] W.K. Khalef, A.A. Aljubouri and H.G. Rashid, "Zinc Oxide Nanowires Prepared by Oblique Angle Deposition Method", Iraqi J. Appl. Phys., 12(1) (2016) 3-7.
- [39] F.K. Fuss, "The effect of surface skewness on the super/postcritical coefficient of drag of roughened cylinders", Procedia Eng., 13 (2011) 284-289.

30



Iraqi Journal of Applied Physics

P. O. Box 55259, Baghdad 12001, IRAQ www.iraqiphysicsjournal.com
Email: info@iraqiphysicsjournal.com
Email: editor_ijap@yahoo.co.uk
Email: irq_appl_phys@yahoo.com

Subject Index 2005-2020

Alternative & Renewable Energy

IJAP-AARE

- General Characteristics of High Energetic Proton Events Observed with SOHO/ERNE During Solar Cycle 23, 10(4), 3
- Nuclear Green Energy, 10(1), 3
- Characterization of Laser-Ablated Nanostructured Al₂O₃/p-Solar Cells, 11(1), 29

Applied & Nonlinear Optics

IJAP-AANO

- Computer Aided Design of a Magnetic Lens Using a Combined Dynamic Programming and Artificial Intelligence Technique, 10(1), 33
- Control of Nonlinear Dynamics in Semiconductor Laser with Optoelectronic Feedback, 15(1), 3
- Curvelet-Based Optical Flow Estimation Algorithm Based on Central Derivatives, 6(2), 13
- Design of a Multi-Electrode Immersion Lens for Ion-Optical Systems, 2(1,2), 27

IRAQI JOURNAL OF APPLIED PHYSICS

IJAP, Vol. 16, No. 4, October-December 2020, pp. 31-36

- Design of All-Reflecting Aplanatic Objective, 9(3), 19
- Development of an Inverted Optical Tweezers with Full Motional Control, 7(2), 19
- Investigations of Linear and Nonlinear Optical Properties of Transparent ZnO Thin Films Grown by Sol-Gel Method, 6(3), 29
- Key Mechanisms of the Nonlinear Amplification: Physics and Applications, 1(2), 3
- Microstructual Features and Properties of High-Hardness and Heat-Resistant Dispersion Strengthened Copper by Reaction Milling, 8(4), 3
- New Method for Calculating Cumulative Line Energy Using Pupil Function Technique, 2(1,2), 7
- Numerical Analysis of Temperature Dependencies of Optical Elasticity Coefficient on Lens Induced in Solid-State Laser Crystal, 14(2), 35
- Some Optical Properties of an Electrostatic Immersion Lens Using the Charge Density Method, 1(4), 21
- Temperature-Dependent Birefringence Properties of Be₃Al₂Si₆O₁₈ Crystal, L2(1), 12

Applied Mechanics & Thermodynamics

IJAP-AMAT

- Analytical and Experimental Study on Bound and Free Surface Waves in Wind-Wave Tank System, 8(1), 11
- Analytical Calculation of Heat Conduction in Two-Phase Heterogeneous Materials, 7(4), 11
- Characterization of D.C. Sputtering System, L1(1), 3
- Employing Inner Triplet Upgrade in Cold Mass Cooling Design for Large Hadron Collider, L2(1), 19
- HAZ Extent Analysis in Fiber-Reinforced Plastic Grooving by Laser, 1(1), 3
- Investigation of Bound and Free Surface Waves in Microwave and Acoustic Wind-Wave Tank Systems, 14(2), 11
- Optimization of Composition, Structure and Characteristics of Metal in Arc Deposition, 5(2), 37
- Marangoni Convection Effect on the Melting of GaSb/InSb/GaSb Sandwich Structured Sample, 4(2), 35
- Modeling of the Preheating Effect on Keyhole Laser Welding Efficiency, L1(1), 10
- Structural, Electronic and Thermal Properties of TiC Compound in Sodium Chloride Structure, 11(1), 9
- Torque and Magnetic Flux Analysis Using an Advanced Dynamic Dynamometer Test Bed for Electromechanical Motors, 5(1), 13
- Using Longitudinal Surface Acoustic Waves for Non-Destructive Testing of Inner Surfaces, L1(2), 9

Digital & Optical CommunicationsIJAP-DAOC

- A Balanced Backoff Algorithm for IEEE802.11 Wireless Network, 8(1), 27
- A CPW-Fed Printed Monopole Ultra-Wideband Antenna with E-Shaped Notched Band Slot, 6(4), 17
- A New Fractal Microstrip Bandpass Filter Design Based on Dual-Mode Square Ring Resonator for Wireless Communication Systems, 5(1), 7
- A Novel Secure Digital Watermark Generation from Public Share by Using Visual Cryptography and MAC Techniques, 10(3), 3
- Analysis and Design of Combined Fractal Dipole Wire Antenna, 5(2) 29
- Application of Multiple Coded Frame Temporal Processing to Enhance Digital Image Transfer for High-Definition Communications Systems, 14(1), 27
- Classification of Digital Modulation Using Wavelet Transform, 1(3), 15
- Coherent Detection in Optical Fiber Systems, 3(1), 3
- Comparative Evaluation of Bit Error Rate in Frequency Selective Fading Channels Employed in Wavelet Modulation, L1(2), 14

- Crosstalk and Noise in Optical Amplifier with Gain Clamping by Vertical Laser Field, 16(2), 17
- Design and Analysis of Special Small Size Cross Dipole Antenna, 6(2), 19
- Design and Implementation of Adaptive Antenna System in a New LTE 3GPP Transceivers Based Multiwavelet Signals, 10(2),
- Design and Implementation of Adaptive Antenna System in Physical Layer CDMA Transceivers Based Multiwavelet Signals, 11(1), 3
- Design of Low-Cost Multi-Waveforms Signal Generator Using Operational Amplifier, 14(1), 13
- Determination of The Satellite Images Orientation Using DCT Coefficients, 6(2), 31
- Dipole Antenna with Fractal Koch Curve Geometry for Multiple Frequency Applications, 7(2), 3
- Effect of Chirping on Received Pulse Shape in Optical Fiber Communications, L2(2), 7
- Frequency-Selective Surface for Reduced Mutual Coupling among Closely Spaced Array Antenna, 14(1), 19
- FSK Transceiver for Bit Error Rate Tester Implementation, 8(4),
- Influence of Magnetic Saturation on Sensorless Rotor Position Estimation in IPMSM Drives Based on HIL Simulator, 8(3), 3
- Linear Adaptive Antenna Array Geometry Effects on Radiation Pattern, L3(1), 3
- New Algorithm for High Throughput of IEEE 802.11 Distributed Coordination Function, 14(2), 27
- Novel Optical Fiber Sensor Based on SGMS Fiber Structure for Measuring Refractive Index of Liquids and Gases, 7(4), 17
- Probabilistic Roadmap, A*, and GA for Proposed Decoupled Multi-Robot Path Planning, 10(2), 3
- Performance Optimizing of Fourth Order Delta-Sigma Fractional-N Frequency Synthesizer using a Dither Technique for Third Generation (3G) Applications, 7(1), 3
- Phase Noise Compensation for Coherent Orthogonal Frequency Division Multiplexing in Optical Fiber Communications Systems, 5(2), 3
- Quantum Limit Characterization of Signal-to-Noise Ratio using Phase-Shift Keying in Homodyne Detection, L3(1), 11
- Range-Coverage Extension Using Smart Antennas in Mobile Communications Systems, 5(2), 25
- Reliable Implementation of Paillier Cryptosystem, 10(4), 27
- Signal Mechanism Analysis of Fiber Arrival Time in Fiber Optic Pin, 5(2), 13
- Software Defined Radio (SDR) Methodology Based Multi-Core Software Platform, 9(4), 3
- Synchronization Scheme for Secured Communications System Based on Chaotic Signals, L3(1), 7
- Transmission of Compressed Video Signals through Spread Spectrum Channel, 6(4), 9
- A Method to Improve the Security Level of Advanced Encryption Standard Algorithm by Using Proposed Algorithm, 8(4), 29

Electronic Materials & Devices

IJAP-EMAD

- Analysis of Atomic and Electronic Structures of NiO/Au Interfaces by High-Resolution MEIS and Photoelectron Spectroscopy, 14(3), 13
- Characterization of E-Mode InZnO Thin Film Transistors Produced by DC Sputtering Technique, L3(1), 19
- Comparison of Electro-optical Effects in Pure and Cobalt Nanoparticles-Doped 6CHBT Liquid Crystals, 15(1), 5
- Dark and Illumination Electrical Characteristics of ZnS/Si Heterojunction Prepared by Pulsed Laser Deposition, 11(2), 25
- Development of NVD's Using XR5TM IIT Technique and III-V Photocathode Under Night Sky Conditions, 7(4), 33
- Effect of Heat Treatment on the Optical Properties of ZnO Thin Films Prepared by Chemical Spray Method, 9(1), 23

IRAQI JOURNAL OF APPLIED PHYSICS

IJAP, Vol. 16, No. 4, October-December 2020, pp. 31-36

- Effect of Substrate Temperature on Structural Characteristics of Nano Silver Oxide Prepared by Pulsed-Laser Deposition, 11(2) 33
- Electrical Properties of Cu₂O Films Prepared by Electro-Deposition Method, L1(2), 27
- Empirical and Simulation of Thermal Insulator of SWCNTs Ceramic/Polymer Nanocomposites, 7(4), 3
- Enhancement of Current Gain at High Collector Current Densities for Silicon-Germanium Heterojunction Bipolar Transistors, 16(1), 9
- Extraction of Doping Profile in Substrate of MNOS capacitor Using Fast Voltage Ramp Deep Depletion C-V method, 6(1), 35
- Fabrication and Characterization of InZnO TFTs Grown on Transparent Conductive Oxide Substrate by DC Sputtering Technique, 6(1), 41
- Field Dependent Critical Trap Density for Thin Gate Oxide Breakdown, 6(3), 15
- Fundamentals of Microwave Integrated Circuits Based on High-Temperature Superconductors, 9(3), 3
- Junction Characteristics of Wide-Emitter (p)CdS-(n)Si-(p)Si Heterojunction Transistor, 2(1,2), 3
- Nanostructure Dopants TiO₂ Films for Gas Sensing, 7(2), 27
- New High Angular Resolution Detection System for Direction Recognition, 1(3), 27
- Performance Comparison of InP-Based Phototransistors to PIN and UTC Photodiodes, 4(4), 13
- Recent Developments in Silicon Photomultipliers, 4(3), 27
- Structural and Gas Sensing Characteristics of CuO-Doped ZnO Thin Films Papered by Pulsed-Laser Deposition, 15(4), 3
- Study on Compensation of Thermal Stresses in the Fabrication Process of Thin-Film Transistor, L1(1), 28
- Synthesis and Characteristics of Electrochromic Glass with Multi-Layer Configuration Based on glass/ITO/WO₃/ZrO₂/NiO/ITO/glass, 15(4), 17
- Synthesis of Antimony Oxide Nanoparticles by Pulsed Laser Ablation in Wet Media, 9(3), 13
- Wide Range Speed Control Based on Field Oriented Control of Permanent Magnet Synchronous Motor, 9(4), 21
- Wideband (0.6-11) micron Angle Deposited Thin Te:S Laser Detector, 1(4), 3
- Underwater Sensing Characteristics of a ZnO Thin Film Sensor Prepared by Spray Pyrolysis, L1(1), 24

Laser Physics & ApplicationsIJAP-LPAA

- (3-5)µm and (8-12)µm Wavelengths Ultra-Short Tunable Laser Pulses Using Optical Parametric Oscillation Technique, 4(4), 37
- A Line Tuned TM₀₀ Mode CW CO₂ Laser, 1(1), 8
- Accurate Relative Frequency Cancellation Between Two Independent Lasers, 2(3,4), 3
- Characterization of Diode Laser-Pumped Nd:YVO₄ Disk Laser, 4(2), 31
- Characterization of Quantum Well Diode Pumped Nd:YVO₄ Using V-Shape Technique, L1(1), 31
- Using V-Shape Technique, L1(1), 31
 Continuous-Wave Broadly Tunable Cr²⁺:ZnSe Laser, 2(3,4), 6
- Design and Simulation of DPSS Laser with SHG for Material Processing, L2(1), 3
- Design and Simulation of Q-Switching and Mode-locking Nonlinear Mirror for Frequency-Doubled DPSS Nd:YAG Laser Output, 7(4), 23
- Design, Construction and Operation of a Multi-Stage Large-Bore CO₂ Laser, 1(1), 25
- Development of UV Raman LIDAR System to Measure Temperature and Water Vapour Profiles in Troposphere Layer, 14(2), 19
- Effect of Active Medium Temperature on the Output Characteristics of Pulsed Free-Running R6G and RB Dye Laser, 1(1), 30
- Effect of Self-Absorption on the Output Power of CW CO₂ Laser, L2(1), 31

- Effects of Semiconductor Laser Bias Current on Synchronization in Chaotic Dynamics, 15(4), 11
- Effect of Transverse Magnetic Field on Laser Beam Width Parameter, 8(3), 31
- Femtosecond Ti:sapphire Laser Pulses to Deposit Precious Metal Nanoparticles on Crystalline and Amorphous Titanium Dioxide Films, 14(2), 43
- Gaussian to Super-Gaussian Laser Beam Intensity Profile Conversion using Glass Micro-Optic Fabricated with Reflowed Photoresist, 16(2), 3
- HAZ and Melt Limits of 3-D CO₂ Laser Welding, 7(2), 11
- Improvement of Wound Healing in Rabbit Skin by Low Level Polarized Laser Light, 9(4), 29
- Laser-Assisted CVD Fabrication and Characterization of Carbon and Tungsten Microhelics for Microthrsters, 3(3), 3
- Laser-Controlled Photoluminescence Characteristics of Silicon Nanocrystallites Produced by Laser-Induced Etching, 1(1), 15
- Laser-Human Skin Interaction: Analytical Study and Optimization of Present Non-Ablative Laser Resurfacing, 4(3), 5
- Modeling of 3-D Keyhole CO₂ Laser Welding of Steel, 6(1), 15
- Modeling of Plume Dynamics in Laser Ablation with Application to Nanotubes Synthesis, 16(2), 25
- Modeling of Temperature-Dependent Absorptivity of Laser-Treated Surface, 6(3), 21
- Non-ablative Tattoo Removal Using Fundamental and Second Harmonic Nd:YAG Laser (Histological Observations), 9(4), 11
- Non-Ablative Tattoo Removal Using Fundamental and Second Harmonic Nd:YAG Laser (Tattoo Ink Clearance Response), 10(1), 21
- Optical Properties of Silicon Nanoparticles Produced by Nd:YAG Laser Ablation, 4(4), 19
- Performance Optimization of Multi-Quantum Wells Laser Used in Optical Communications, L2(2), 11
- Profiling of Antimony Diffusivity in Silicon Substrates using Laser-Induced Diffusion Technique, L3(1), 23
- Simultaneous Amplitude-Modulation and Harmonic Frequency-Modulation Mode Locking of Nd:YAG Laser, 16(2), 11
- Structural Characteristics Study of Indium Diffusion in Silicon Using a Pulsed Nd:YAG Laser, 1(1), 34
- Studying of Reflected Light Optical Laser Microscope Images Using Image Processing Algorithm, 9(1), 15
- Temperature Dependencies of Refractive Index and Optical Elasticity Coefficient on Lens Induced in Nd:YAG Crystal, 8(1), 35
- Terahertz Lasing Using Optically Excited Neutral Donor Centres Embedded in Crystalline Silicon, 16(3), 21
- Using Frequency Resolved Optical Gating for Optimization of Thermal Lensing Compensated Ti:Sapphire Femtosecond Laser System, 11(3), 9

Plasma Physics & Applications

IJAP-PPAA

- Advanced Laser Diagnostics for Non-Equilibrium Plasma Assisted Combustion Kinetics, 14(2), 3
- Analysis of Boltzmann Equation for SF6 and Some Gas-Mixture Discharges at Critical Field Condition, 12(1), 31
- Analysis of Secondary Electron Emission in Gas Glow Discharges Used for Thin Film Deposition Processes, 16(1), 15
- Breakdown and Langmuir Electrical Characteristics of Glow Discharge Plasma in DC Reactive Dual-Magnetron Sputtering System, 16(1), 3
- Characterization of Low-Pressure Argon and Nitrogen Discharge Plasmas Using Electrical Floating Probe Method, 9(3), 25
- Current-Voltage Characteristics of DC Plasma Discharges Employed in Sputtering Techniques, 12(3), 10
- Determination of Electron Temperatures in Rare-Gases Plasma, 4(1), 5

All Rights Reserved

IJAP, Vol. 16, No. 4, October-December 2020, pp. 31-36

- Effect of Adding Nitrogen to the Gas Mixture on Plasma Characteristics of a Closed-Field Unbalanced DC Magnetron Sputtering System, 10(1), 27
- Effect of Annealing on the Electrical Characteristics of CdO-Si
 Heterostructure Produced by Plasma-Induced Bonding
 Technique, 4(3), 33
- Employment of Magnetron to Enhance Langmuir Probe Characteristics of Argon Glow Discharge Plasma in Sputtering System, 12(4), 19
- Generation of Highly-Directed Laser-Driven Plasma Blocks for Light Ion Beam Fusion Applications, 6(1), 3
- Influence of Inter-Electrode Distance, Gas Mixing, Magnetic Field and Cathode Material on Breakdown Voltage of Lab-Made DC Magnetron Sputtering Device, 10(4), 21
- Influence of Magnetic Nitrogen Plasma Functionalization of High Density Polycarbonate, 8(4), 17
- Isentropic and Isenthalpic Cooling Techniques for Low-Temperature Discharges, 15(4), 29
- Langmuir Probe Diagnostics of Low-Pressure Glow Discharge Plasma Using Argon-Nitrogen Mixtures, 12(2), 17
- Laser-Based Measurements in Non-Equilibrium Plasmas, 8(1), 3
- Magnetic Field Distribution of Closed-Field Unbalanced Dual Magnetrons Employed in Plasma Sputtering Systems, 12(3), 35
- Microhardness and Tension Measurements of Pulsed-Laser Surface-Treated Aluminum Alloys, 11(3), 21
- Monte Carlo Simulation of Electronic Kinetics in Gas Discharge, 1(3), 3
- Numerical Model to Estimate the Potential Changes within Laser-Solid Surface Interaction Zone, 6(2), 3
- One-Dimension Simulation of Plasma Flow in the Cylindrical Hall Thruster, 8(4), 23
- The Fundamentals of Plasma-Assisted CVD Technique Employed in Thin Films Production, L1(2), 3

Quantum Physics & Spectroscopy IJAP-QPAS

- Alternative mechanisms for electroweak symmetry breaking, 8(2), 8
- Application of Hydrotropic Solubilization Phenomenon for Estimating Diacerein in Capsule Dosage Form by Spectrophotometry Methods, 8(3), 17
- Beating Classical and Quantum Limits in Optics, 3(2), 3
- Calculation of Charge Density Distribution of (2s-1d) Shell-Model Nuclei Using the Occupation Numbers of States, 2(1,2), 31
- CERN experiments observe particle consistent with long-sought Higgs boson, 8(3), 11
- Characterization of Highly-Pure Silicon Dioxide Nanoparticles as Scattering Centers for Random Gain Media, 16(2), 37
- Correction Four-Component Dirac-Coulomb Using Gaussian Basis-Set and Gaussian Model Distribution for Super Heavy Element (Z=115), 12(1), 17
- Design of a Fundamental Concept of Virtual Reality System for Intensity Distribution in Free Electron Laser Amplifier, 4(1), 11
- Dispersion Compensation for a Femtosecond Self-Pumped Phase Conjugator, 2(3.4), 9
- Effect of Acidic Environment on the Spectral Properties of Hibiscus sabdariffa Organic Dye used in Dye-Sensitized Solar Cells, 10(2), 27
- Effect of Dissipative Forces on the Theory of a Single-Atom Microlaser, 2(3,4), 12
- Effect of Oxygen Quencher on Absorption and Fluorescence Spectra of Rhodamie-6G and Rhodamine-B Dyes in Ethanol Solvent, 1(1), 20
- Effect of the Scattered Solar Radiation on the Atmospheric Ozone Measurements, 2(1,2), 11
- Effects of Rare Earth Dopants on Spectroscopic Properties of Silica Glasses Prepared by Sol-Gel Technique, 16(3), 3
- Effects of Temperature and Concentration on Spectroscopic Behaviors of Laser Dye, 12(1), 35
- Elusive particle may be near, 8(2), 26

- Energy Transfer Calculations Based on Fluorescence Spectra of Acriflavine and Rhodamine B Laser Dyes, 16(3), 33
- Experimental Observations and Modelling of Electron Density of the Plasmasphere, 6(1), 47
- Extra Val Function for the Theoretical Sensing of Ultraviolet Light and Temperature Produced by Fluorescein-Filled Photonic Crystal Fiber, 13(3), 29
- Fluorescence Energy Transfer Characteristics in Binary Acriflavine-Red Nut Lasing Dye Mixtures, 12(2), 3
- Fractal Nanotechnology, 4(4), 25
- FTIR Spectra of Molybdenum Tellurite Glasses, 2(1,2), 23
- FTIR Spectroscopic and Computational Studies on Hydrogen Adsorption on the Zeolite Li–FER, 4(2), 21
- General Characteristics of High Energetic Proton Events Observed with SOHO/ERNE During Solar Cycle 23, 10(4), 3
- Generation of Femtosecond Pulses from Order-of-Magnitude Pulse Compression in a Synchronously Pumped Optical Parametric Oscillator Based on Periodically Poled Lithium Niobate, 2(3,4), 24
- Generation of Intense 8-fs Pulses at 400nm, 2(3,4), 15
- Higgs Boson, 8(2), 3
- High-Intensity Third-Harmonic Generation in Beta Barium Borate Through Second-Order and Third-Order Susceptibilities, 2(3,4), 18
- Introduction to the Higgs Boson Papers, 8(2), 12
- Introduction to Particle Physics and the LHC, 8(2), 23
- Luminescence Characterization of the Bio-Conjugated Quantum Dots with CA125 Antigen Using Linkage Molecules, 7(1), 27
- Luminescent Plates Doped with Stilbene 420 Dye for Enhanced Silicon Solar Cell Performance: Down-Conversion, 6(4), 3
- Measurements of d-band Center Shifts of Titanium Dioxide Catalyst Using Gold Nanoparticles in Carbon Monoxide Oxidation Reaction, 14(3), 3
- Measurement of Water Vapour and Temperature Profiles Within the Troposphere Using Ultraviolet Raman LIDAR System, 8(1), 19
- Medium Energy Ion Scattering Spectrometry of Helium Ions Scattered from Rutile Titanium Dioxide Surfaces, 14(3), 29
- Nanolasers: Lasing from Nanoscale Quantum Wires, 3(4), 3
- Near-Edge X-ray Absorption Fine Structure Analysis of Magnesium-Palladium Nanoparticles Fabricated by Gas Evaporation Method, 14(3), 35
- Optimization and Fine-Tuning of Controlled White-Light Continuum Generation in Transparent Solid Medium by 1-kHz Repetition Rate Femtosecond Laser Pulses, 12(1), 27
- Phase Conjugation with Random Fields and with Deterministic and Random Scatterers, 2(3,4), 21
- Silicon Dioxide Nanostructures-Coated External Cavity for Gain Enhancement of Rhodamine B Lasing Dye, 14(1), 3
- Synchronization in Optically Coupled Chaotic Systems by Optical Feedback, 12(1), 11
- Synchrotron-Radiation Infrared Microscopy Analysis of an Amyloid Peptide Irradiated by Mid-Infrared Free-Electron Laser, 14(3), 41
- The biggest machine in the world, 8(2), 22
- The Mythical Higgs Boson, 8(2), 26
- Finding the Smallest Unifying Particle in the Human Universe: An Artistic Theory of Everything, 8(2), 27
- X-Ray Absorption Fine Structure Spectroscopy of Alumina-Supported Copper Oxide for Conversion Electron Yield Detection, 14(4), 29

Semiconductors & Optoelectronics

IJAP-SCAOE

- Analysis and Simulation of Carrier Transport in InP-Based Double Heterojunction Photoelectronic Device, 13(3), 23
- Annealing Effect on the Photoluminescence of CdTe/CdSe Thin Film Photovoltaic Devices, 1(3), 23
- Band Diagram of p-PbTe/n-Si Heterostructure, 1(2), 27
- Characteristics of a-Si:H Solar Cell Under Extended Illumination Condition Using NIR Laser, 5(1), 35

IRAQI JOURNAL OF APPLIED PHYSICS

IJAP, Vol. 16, No. 4, October-December 2020, pp. 31-36

- Characteristics of p-n Junction Silicon Carbide LED, 2(1,2), 17
- Characterization of (CdO)_{1-x}(ZnO)_x Thin Films Prepared by Pulsed-Laser Deposition for Solar Cell Applications, 11(3), 3
- Characterization of CdS:In/Si Heterojunction Solar Cells, 1(2), 13
- Characterization of SiC/Si Heterojunction Fabricated by Plasma-Induced Growth of Nanostructured Silicon Carbide Layer on Silicon Surface, 12(2), 9
- Charge Injection into Organic Semiconductors, 4(2), 5
- Computation of Optical Energy Gap of Cu₂O Thin Film: Theoretical Estimation, L1(1), 21
- Correlation Between Kinematics, Optical and Structural Properties of Size Quantized PbS Nano Films Deposited by Spray Pyrolysis, 10(3), 35
- DC Conductivity and Optical Properties of InSbTe₃ Amorphous Thin Films, 6(3), 9
- Density of Defect States in Se₉₀Sb_{10-x}Ag_x Glassy Alloys, 9(4), 25
- Effect of Annealing Temperature on Urbach Energy for CdO:In₂O₃ Thin Films Prepared by Pulsed-Laser Deposition, 16(1), 21
- Effect of Bath Temperature on the Optoelectronic Characteristics of Chemically Deposited CdS Thin Films, 5(1), 23
- Effect of pH Value on the Photoconductivity of Chemically Deposited CdS Thin Films, L2(1), 23
- Effect of Thickness on Optical and Electrical Properties of ZnO Prepared by CBD, 7(1), 11
- Effects of Deposition Parameters on Chemically Deposited PbS Thin Films, 4(4), 7
- Effects of Temperature on The Properties of Amorphous-to-Crystalline Transition in AgSbSe₂ Thin Films, 7(1), 17
- Efficiency Enhancement of Photovoltaic Silicon Cell by Ultrashort Laser Pulses, 5(2), 33
- First Principle Calculation of Pressure-Induced Phase Transition
- and Band Structure of Gallium Phosphide, 9(4), 17
 Gas Phase Growth Techniques for Quantum Dots: An Overview, 14(4), 3
- Growth of In_xGa_{1-x}Sb Bulk Crystals by Czochralski Technique, 1(4), 17
- Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering, 16(3), 27
- High-Quality Plasma-Induced Crystallization of Amorphous Silicon Structures, 5(1), 35
- Illumination and Dark Current-Voltage Characteristics of Polymer-Silicon Heterojunction Solar Cells, L2(1), 12
- Influence of Deposition Parameters on Optical and Electrical Properties of Cu_xS Thin Films Prepared Using Chemical Bath Deposition Method, 4(3), 19
- Investigation of Amorphous to Crystalline Transition in Glassy $Se_{80}Te_{20}$ and $Se_{70}Te_{20}M_{10}$ (M=Ag, Cd, Sb) Alloys, 1(3), 7
- Light-Beam-Induced-Current Analysis of Thin-Film Polycrystalline Solar Cells, 7(4), 29
- Modeling of Transport Properties of Amorphous Silicon Solar Cells, 6(1), 25
- Nano/Micro Surface Texturing and Enhancing of Photovoltaic Cells Efficiency by Using UV Femtosecond Laser Pulses, 7(2), 33
- Nickel Doping and Annealing Effects on the Structural and Optical Properties of Iron Oxide Thin Films, 10(3), 17
- Optical and Electrical Properties of Zinc Oxide Films Prepared by Spray Pyrolysis, 6(4), 23
- Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis Technique, 4(1), 31
- Optical Properties of Annealed Cadmium Sulfide Thin Films Prepared by Chemical Bath Deposition, L2(2), 19
- Optical Properties of Many-Layers Zinc Sulphide Thin Films prepared by Chemical Bath Deposition Method, 6(3), 33
- Optical Properties of Thermally-Annealed Tin-Doped Indium Oxide Thin Films, L2(2), 15
- Optimization of Silicon Solar Cells Efficiency by Chemical Texturing, 10(2), 17
- Optoelectronic Characteristics of As-doped Silicon Photodetectors Produced by LID Technique, L1(2), 23

- Preparation and Characteristic Study of In₂O₃/c-Si Made by Spray Pyrolysis, 1(1), 11
- Preparation and Characterization of Self-Assembled n-ZnS Thin Films, 4(4), 33
- Preparation and Characterization of PAni Films by Electrochemical Polymerization, 10(2), 23
- Preparation and Study of Indium Oxide Nanoparticles, 10(4), 15
- Spectral and Electrical Characteristics of Nanostructured NiO/TiO₂ Heterojunction Fabricated by DC Reactive Magnetron Sputtering, 16(3), 39
- Stress Management and Interfacial Strength of Gallium Nitride Layer Grown on Diamond Substrate, 13(2), 19
- Structural Characteristics of Silicon Nitride Nanostructures Synthesized by DC Reactive Magnetron Sputtering, 15(4), 33
- Structural, Electronic and Gas Sensing Properties of Cu-Doped ZrO₂-TiO₂, 10(3), 23
- Structural Properties of Semiconducting Nanostructures Prepared by DC Plasma Reactive Sputtering Method, 10(3), 41
- Studying Defects on Semiconductor Surfaces by Photoacoustic Spectroscopy, 6(3), 25
- Synthesis of Silicon Nanowires by Selective Etching Process, 4(3), 15
- Technology and Future of III-V Multi-Junction Solar Cells, 6(3),
 3
- The Effect of Some Experimental Parameters on the Properties of Porous Silicon, 4(1), 37
- Theoretical Treatment to Determine the Quality of Photonic Crystal Fiber (PCF) as a Function of the Number of Air Holes, 9(3), 31
- Thermal Management of Vertical External Cavity Surface Emitting Laser Grown on GaAs Substrate, 13(2), 15
- Thermally Stimulated Currents Technique to Study Traps in Insulators and Semiconductors, 11(2), 3
- Using Substrate Removal Technique for GaAs-Based VECSEL Optimization, 13(2), 23

Solid State Physics & Applications

IJAP-SSPAA

- A Mathematical Model to Describe the Densification Process During the Sintering of Ceramic Compacts, 4(2), 11
- Antibacterial Activity of Gold and Silver Nanoparticles against Pathogen Species, E. coli and S. aureus, 13(3), 19
- Bulk Properties of Yba₂Cu₃O₇ Superconducting Materials, 1(2), 19
- $\bullet \quad \hbox{Calculation of Buildup Factors for Ceramic Materials, 7(1), 23}\\$
- Characteristics of Gold and Silver Nanoparticles Deposited on Crystalline and Amorphous TiO₂ Films by Femtosecond Laser Pulses, 8(1), 43
- Characterization of Commercial Al-Si Casting Alloys Reinforced with Nano SiC Composites, 8(3), 25
- Characterization of Epoxy Composites Reinforced by Waste Bio-Fibers, 11(3), 15
- Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique, 16(4), 25
- Characterization of Pulsed-Laser Deposited CuO-Doped MgO Thin Films for Gas Sensing Applications, 13(3), 13
- Characterization of SiC/SiC Composites Used for Power Plant Blanket, L2(1), 27
- Characterizations of Hydroxyapatite Thin Films Deposited by Spray Pyrolysis on Titanium Substrates for Bone Implant Applications, 10(3), 11
- Complex Magnetic Investigation of Ferritic Stainless Steel, L2(1), 9
- Conjunctional Freezing-Assisted Ultrasonic Extraction of Silicon Dioxide Nanopowders from Thin Films Prepared by Physical Vapor Deposition Technique, 15(4), 23
- Crystallization and Glass Transition Kinetics in Se₉₀Sb_{10-x}Ag_x Glassy Alloys, 9(1), 7
- Densification Behavior and Dielectric Properties of Low-Temperature Corderite Ceramics, L1(2), 20

IRAQI JOURNAL OF APPLIED PHYSICS

IJAP, Vol. 16, No. 4, October-December 2020, pp. 31-36

- Determination of Thermal Conductivity of Compact Graphite Iron, 4(4), 3
- Effect of Bio-Fiber Waste Addition on Specifications of Epoxy Composite, 11(1), 21
- Effect of Coir Fiber Length and Content on Mechanical Properties of Unsaturated Polyester Composites, 11(3), 27
- Effect of Gas Mixing Ratio on Energy Band Gap of Mixed-Phase Titanium Dioxide Nanostructures Prepared by Reactive Magnetron Sputtering Technique, 14(4), 19
- Effects of CaO-B₂O₃ Glass on Sintering and Microwave Properties of Cordierite Ceramics for Low-Temperature Cofired, L1(1), 16
- Effects of Operation Parameters on Structures and Surface Morphology of Tin Dioxide Nanostructures Prepared by DC Reactive Sputtering, 16(3), 13
- Epitaxial and Structural Analysis of Nickel-Manganese-Gallium Films Prepared by Magnetron Sputtering, 14(4), 13
- Evaluation of Some Atomic Coefficients for Elements Carbon-Copper-Silver by Using Beta Particles, 10(1), 15
- Fabrication of Carbon Nanotube/Titanium Dioxide Nanocomposite Photocatalyst Using Sol-Gel Method, 12(2), 21
- Formation of Mid-Infrared Slot Antenna Arrays on Thin Al₂O₃/Si Structures Fabricated by Atomic Layer Deposition, 14(4), 25
- Influence of Complexing Agent on Morphology Properties of PbS Thin Films Studied by Atomic Force Microscopy, 11(2) 13
- Influence of Complexing Agents on Structural Properties of PbS Thin Films Prepared by CSD Method, 12(1), 23
- Influence of Functionalization MWCNTs Using Acid Treatment on Gram Negative and Gram Positive Bacteria, 10(3), 29
- Interfacial Adhesion of PZT Ferroelectric Thin Films Determined by Nano-Indentation Method (Rapid Communication), 5(1), 32
- Investigation of the Mechanical Behavior of Binary and Ternary Polymer Blends, 11(2), 19
- Key Mechanisms of Low-Pressure Glow Discharge in Magnetized Plasmas, 12(3), 3
- Key Principle of Electroluminescent Polymers (Review Article), 5(1), 3
- Low-Temperature Aqueous Chemical Growth of Inorganic-Organic Hybrid Junction with ZnO Nanorods/Polyfluorene Structure, 9(1), 29
- Microhardness of Nanostructured Si_xN_{1-x} Thin Films Prepared by Reactive Magnetron Sputtering, 12(2), 15
- Microstructural Study of Copper-Carbon Composite Interface, 6(2), 25
- Methods of Determining the Refractive Index of Thin Solid Films, 4(1), 17

- Micron-Scale Modifications of Silicon Surface Morphology by Pulsed-Laser Texturing, 16(2), 31
- Nanostructured CdSnSe Thin Films Prepared by DC Plasma Sputtering of Thermally Casted Targets, 14(4), 33
- Nanostructured Copper Oxide Thin Films Prepared by DC Reactive Magnetron Sputtering, 13(2), 11
- Polynanocrystalline CuIn₃Se₅ Thin Film Photoabsorber Layer Produced by Pulsed-Laser Deposition, L3(1), 15
- Power Reduction in Flexible Silicon Thin Film Digital Circuits, 5(2), 19
- Preparation and Characterization of Eggshell Powder (ESP) and Study its Effect on Unsaturated Polyester Composites Material, 11(1), 25
- Preparation and Characterization of Silicon Dioxide Nanostructures by DC Reactive Closed-Field Unbalanced Magnetron Sputtering, 12(4), 13
- Preparation and Characterization of Silicon Nitride Nanostructures Prepared by DC Reactive Sputtering Technique with Novel Design of Closed-Field Unbalanced Dual Magnetron Assembly, 13(3), 3
- Preparation of Highly Pure Nanostructures by Reactive DC Magnetron Sputtering Technique, 12(3), 27
- Preparation of Refractory Mortar from Iraqi Raw Materials, 11(2), 37
- Production of Ceramic-Based Composites By Self Infiltration, 4(1), 25
- Scanning Tunneling Microscopy and Medium Energy Ion Scattering Spectrometry of Spinel Structure of Li₄Ti₅O₁₂ Surface, 14(3), 21
- Structural and Surface Characteristics of Cd_{0.9}Sb_{0.1}Se Thin Films Prepared by Thermal Evaporation, 14(1), 23
- Structural Characteristics of Nickel Ferrite Nanoparticles Synthesized by New Arrangement of Concentric Targets in DC Reactive Magnetron Sputtering, 12(4), 9
- Structural Properties of Nickel Oxide Nanostructures Prepared by Closed-Field Unbalanced Dual Magnetron Sputtering Technique, 13(2), 3
- Structural Characteristics of γ-Al₂O₃ Nanoparticles Prepared by Laser-Assisted Spray Pyrolysis Technique, 11(2), 29
- Zinc Oxide Nanowires Prepared by Oblique Angle Deposition Method, 12(1), 3

* * *

Notes:

- 1(1), 3 refer to IJAP, Vol. 1, No. 1, page 3
- L1(1), 3 refer to IJAPLett, Vol. 1, No. 1, page 3

Iraqi Journal of Applied Physics

P. O. Box 55259, Baghdad 12001, IRAQ www.iraqiphysicsjournal.com
Email: info@iraqiphysicsjournal.com
Email: editor_ijap@yahoo.co.uk
Email: irq_appl_phys@yahoo.com

Author Index 2005-2020

Α		Ahmed, Mohamed S.	IJAP 9(3)
Aasy, Fatma M.M.	IJAP 5(1)	Ahmed, Qusay K.	IJAP 2(1)
Abas, Saadi R.	IJAP 11(1)	Ahmed, Soudad S.	IJAP 5(2)
Abas, Sabah N.	IJAP 14(3)	Ahmed, Sudad S.	IJAP 15(1)
Abbas, Ali H.	IJAP 14(4)	Ahmed, Zahra'a S.	IJAPLett 2(2)
Abbas, Ahmed M.	IJAP 14(1)	Aiboushev, Anatoly	IJAP 8(1) `´
Abbas, Amna M.	IJAP 8(1)	Akif, Sajjad A.	IJAP 12(2)
Abbas, Amna M.	IJAP 14(2)	Al-Algawi, Sariya T.	IJAP 10(4)
Abbas, Hadeel F.	IJAP 10(̀3)́	Al-Algawi, Sariya T.	IJAP 11(1)
Abbas, Jasim M.	IJAP 4(4)	Al-Ali, Mahdi S.	IJAP 2(1)
Abd, Haitham M.	IJAP 14(3)	Al-Ani, Ayad A.	IJAP 12(1)
Abd Muslim, Shaimaa H.	IJAP 10(̀4)́	Al-Ani, Salwan K.J.	IJAP 1(2)
Abdalla, Sora F.	IJAP 12(1)	Al-Ani, Salwan K.J.	IJAP 2(2)
Abdel-Naby, Mohamad	IJAP 6(4)	Al-Ani, Salwan K.J.	IJAP 4(1)
Abdul Hassan, Alia K.	IJAP 10(3)	Al-Asmari, Awad Kh.	IJAP 6(4)
Abdul Hassan, Alia K.	IJAP 10(4)	Al-Awadi, Sarmed S.M.	IJAP 14(1)
Abdulhussain, Sadiq H.	IJAP 8(1)	Al-Baiaty, Jamal M.	IJAP 5(1)
Abdulhussain, Sadiq H.	IJAP 14(2)	Al-Barzanchy, Majed A.	IJAPLett 2(1)
Abdullah, Awfa AR.	IJAP 6(2)	Al-Berkdar, Faiz H.	IJAP 1(1) `´
AbdulRahman, Ibrahim Q.	IJAP 15(1)	Al-Dhafiri, Abdullah M.	IJAP 5(1)
Abdul-Ameer, Haidar J.	IJAP 10(3)	Al-Dhahir, Rashid K.	IJAP 15(1)
Abdul-Jabbar, Jasim, M.	IJAP 6(1)	Al-Dergazly, Anwaar A.	IJAP 4(4)
Abdul-Jabar, Hamed M.	IJAP 6(2)	Al-Faiz, Mohammad Z.	IJAP 4(1)
Abdul-Latif, Nawal E.	IJAP 4(1)	Al-Haddad, Raad M.S.	IJAP 7(2)
Abdul-Latif, Suha I.	IJAP 1(1)	Al-Haddad, Raad M.S.	IJAP 10(3)
Abdul-Razaq, Omar A.S.	IJAP 2(1)	Al-Hadidi, Mahmood R.	IJAP 6(3)
Abdulsattar, Zinah S.	IJAP 15(4)	Al-Hadithi, Sinan H.	IJAPLett 2(1)
Abed, Ali L.	IJAP 12(2)	Al-Hilli, Haifaa A.	IJAP 2(2)
Abid, Ra'ad S.	IJAP 1(4)	Al-Hilli, Muthafar F.	IJAP 10(3)
Abo Raghif, Ali N.	IJAP 4(4)	Al-Jawad, Selma M.H.	IJAP 5(1)
Abood, Saad N.	IJAP 12(1)	Al-Jawad, Selma M.H.	IJAPLett 2(1)
Adams, Michael J.	IJAP 1(2)	Al-Jawad, Selma M.H.	IJAPLett 2(2)
Afifi, Munir A.	IJAP 6(3)	Al-Jawad, Selma M.H.	IJAP 7(1)
Afifi, Hasan	IJAP 6(4)	Al-Jawad, Selma M.	IJAP 11(1)
Agrawal, Soni	IJAP 8(1)	Al-Jubouri, Ali A.	IJAP 12(1)
Agrawal, Soni	IJAP 14(2)	Al-Khayat, Raad O.	IJAP 6(3)
Agool, Ibrahim R.	IJAP 10(4)	Al-Maliki, Firas J.	IJAP 14(4)
Ahmad, Ninet	IJAP 6(4)	Al-Maliky, A.F.	IJAPLett 2(1)
Ahmed, Ahmad K.	IJAP 1(4)	Al-Moudarris, Fatin A.J.	IJAP 2(2)
Ahmed, Ahmad K.	IJAP 2(2)	Al-Naimee, Kais A.	IJAP 5(2)
Ahmed, Ahmad K.	IJAP 4(2)	Al-Naimee, Kais A.	IJAP 7(2)
Ahmed, Ahmad K.	IJAP 10(1)	Al-Naimee, Kais A.	IJAP 12(1)
Ahmed, Ahmad K.	IJAP 12(1)	Al Naimee, Kais A.M.	IJAP 15(1)
Ahmed, Abdl-Mutalib.I.	IJAP 6(2)	Al Naimee, Kais A.M.	IJAP 15(4)
Ahmed, Duha S.	IJAP 10(3)	Al-Naser, Qusay A.H.	IJAP 7(4)
Ahmed, Duha S.	IJAP 12(2)	Al-Obaidi, Maysam T.	IJAP 5(2)
Ahmed, Duha S.	IJAP 13(3)	Al-Obaidi, Maysam T.	IJAP 13(3)
Ahmed, Emad S.	IJAP 6(4)	Al-Oubidi, Esraa A.	IJAP 14(4)
Ahmed, Mohammed A.	IJAP 1(1)	Al-Rawi, Salah M.	IJAPLett 1(1)
Ahmed, Mohamad A.K.	IJAP 8(4)	Al-Rawi, Subhi S.	IJAP 2(2)
Ahmed, Mohamad A.K.	IJAP 9(3)	Al-Rubaiey, Najem A.K.	IJAP 1(1)
Ahmed, Mohamad A.K.	IJAP 13(2)	Al-Rubaiey, Najem A.	IJAPLett 2(1)

410 ((0 15	1145 4/4)	D "	LIAD 0(4)
Al-Saffar, Saad F.	IJAP 4(4)	Butterworth. S.D.	IJAP 2(4)
Al-Safi, Mohammed AL	IJAP 6(3)		
Al-Sawad, Amjad	IJAP 10(4)	С	
Al-Shafay, Borhan	IJAP 11(1)	Cang, Y.L.	IJAP 6(1)
Al-Shaheen, Ahmed H.	IJAP 14(1)	Carbone, Laurent	IJAP 14(4)
Al Shaikh Hussin, Suma		Carrig, T.J.	IJAP 2(3)
	IJAP 6(4)		` '
Al-Shareefi, A.F.S.	IJAP 7(1)	Cerofolini, Gianfranco	IJAP 4(4)
Al-Sharify, Aseel A.	IJAPLett 2(1)	Chaiel, Hussain K.	IJAP 1(3)
Al-Sharify, Aseel A.	IJAP 7(4)	Chandrakar, Rajeev	IJAP 8(1)
Al-Sawad, Amjad	IJAP 10(4)	Chandrakar, Rajeev	IJAP 14(2)
Al-Shimmary, Fahd M.	IJAPLett 2(1)	Cheng, Changming	IJAP 8(4)
Al-Ta'ay, Hana F.	IJAP 1(2)	Chiad, Bahaa T.	IJAP 11(2)
Al-Tabbak, Ahmed A.	IJAp 10(1)	Chiad, Bahaa T.	IJAP 12(1)
Al-Taiee, Aseel M.	IJAPLett 1(2)	Chiad, Bahaa T.	IJAP 12(3)
Al-Taweel, Osama M.	IJAP 6(3)	Chiad, Bahaa T.	IJAP 16(3)
Al-Wattar, Abbas J.	IJAP 16(3)	Chou, Da-Tren	IJAP 5(1)
Al-Zubaidi, Khalid F.	IJAPLett 1(2)	Chuanhui, Cheng	IJAP 9(1)
Alghoraibi, Ibrahim	IJAP 11(2)	Cui, S.	IJAP 8(4)
•	` '	Cui, 3.	13AF 0(4)
Alghoraibi, Ibrahim	IJAP 12(1)	_	
Ali, Abdulrahman K.	IJAP 4(4)	D	
Ali, Abdullah M.	IJAP 9(4)	Dala Ali, Rana O.	IJAP 1(1)
Ali, Ayham M.	IJAP 6(3)	Daoud, Haider. M.	IJAP 4(1)
Ali, Eman A.F.	IJAP 5(1)	Daoud, Naseer F.	IJAP 5(1)
Ali, Fadhil, A.	IJAP 10(1)	Davies, Donald A.	IJAP 1(2)
			• •
Ali, Jawad K.	IJAP 5(1)	Dawood, Hanan M.	IJAP 8(3)
Ali, Mothana I.	IJAPLett 1(2)	Dawood, Hanan M.	IJAP 9(4)
Ali, Omar A.	IJAP 14(1)	Dawood, Haithem S.	IJAPLett 2(2)
Ali, Qusay R.	IJAP 16(3)	Dawood, Mohammed O.	IJAP 13(3)
Ali, Salah F.A.	IJAP 5(1)	Dawood, Yasmeen Z.	IJAP 1(2)
Ali, Shams B.	IJAP 4(4)	de Grave, Annabelle C.	IJAP 1(3)
Almahmoud, Zoalfakar	IJAP 11(2)	Delgado, M. Rodríguez	IJAP 4(2)
			` '
Alrawi, Noor E.N.	IJAP 5(4)	Dhiman, V.	IJAP 8(3)
Altun, Wisam A.	IJAP 12(3)	Dost, Sadik	IJAP 4(2)
Altun, Wisam A.	IJAP 12(4)	Dühr, O.	IJAP 2(4)
Altun, Wisam A.	IJAP 14(1)		
Alwan, Rafeef J.	IJAP 14(4)	E	
Alward, Tariq J.	IJAP 5(2)	Ebrahim, Salwa A.M.	IJAPLett 2(1)
Almahmoud, Zoalfakar	` '		, ,
	IJAP 12(1)	Edan, Mahdi S.	IJAP 8(1)
Amanallah, Sabah M.	IJAP 10(1)	El-Gendy, Y.A.	IJAP 7(1)
Amato, Paolo	IJAP 4(4)	El-Hefnawie, Said	IJAP 6(4)
Anber, Ahmed A.	IJAP 12(2)	El-Kashif, Nihad I.M.	IJAPLett 2(1)
Annaz, Mohammed A.	IJAP 15(4)	El-Mahdi, Ali	IJAP 8(1)
Areán, C. Otero	IJAP 4(2)	El-Mahdi, Ali	IJAP 14(2)
Ashoor, Malik S.	IJAP 14(4)	El-Naggar, A.M.H.	IJAPLett 3(1)
Ashor, Ali H.	IJAP 6(3)	El-Sayed, Gamal A.	IJAP 7(4)
	* *		• •
Astafiev, Andrei	IJAP 8(1)	El-Shekh, Ali H.M.	IJAP 5(1)
Atiya, Hani E.	IJAP 6(3)	Elewi, Maisun R.	IJAP 14(3)
Aziz, Ali S.	IJAP 14(1)	Eliewa, Aref	IJAP 6(4)
Azzawi, Hasan M.	IJAP 8(4)	Essex, E.A.	IJAP 6(1)
	I		
В		F	
Bader, Ban A.M.	IJAPLett 2(2)	Fadhil, Sadeem A.	IJAP 4(2)
Baghel, U.S.	IJAP 8(3)	Fadil, Hussain A.	IJAP 14(3)
•		•	
Balluo, Gergory	IJAP 13(2)	Fahad, Hayder G.	IJAP 16(2)
Banks, P.S.	IJAP 2(4)	Faiq, A.K.	IJAP 6(1)
Barros, Daniel J.F.	IJAP 3(1)	Faisal, Saja H.	IJAP 16(3)
Basyouni, Rami M.	IJAP 7(4)	Faisal, Saja H.	IJAP 16(4)
Bekheet, Ahmed E.	IJAP 6(3)	Fakhri, Mukarram A.	IJAP 11(2)
Believ, Yuri V.	IJAP 2(1)	Feit, M.D.	IJAP 2(4)
Bereznev, S.	IJAPLett 3(1)	Fisher, Mil A.	IJAP 1(2)
			• •
bin Selima, Imad	IJAP 8(1)	Flayeh, Layla A.H.	IJAP 14(3)
bin Selima, Imad	IJAP 14(2)	Fortier, Roger	IJAP 8(1)
Borisov, Anatoly	IJAP 16(3)	Fortier, Roger	IJAP 14(2)
Borisov, E.N.	IJAPLett 3(1)		
Bourgault, Daniel	IJAP 14(4) ´	G	
Burger, A.	IJAP 2(3)	Gafil, Nawal K.	IJAP 14(3)
Butta, S.M.	IJAP 6(1)	Garrone, E.	IJAP 4(2)
Datta, O.IVI.	10/11 0(1)	Janono, L.	10/11 T(Z)

Gbur, G.	IJAP 2(4)	Hamoudi, Walid K.	IJAP 10(2)
Ghafil, Majed O.	IJAPLett 1(1)	Hamza, E.K.	IJAP 9(4)
Gonzalez, Carmen	IJAP 4(4)	Hamza, Falih H.	IJAP 1(1)
•	* * *	,	
Guotong, Du	IJAP 9(1)	Hanna, D.C.	IJAP 2(4)
		Haroun, Rafiuz Z.	IJAP 10(1)
Н		Hasan, Azhar I.	IJAPLett 2(2)
Habeeb, Husam H.	IJAP 1(3)	Hasan, Fadhil A.	IJAP 14(3)
Habubi, Nadir F.	IJAPLett 1(1)	Hasan, Khalid M.Y.	IJAPLett 2(1)
	` ,		
Hadi, Aseel A.K.	IJAPLett 1(2)	Hasan, Mazin H.	IJAP 15(4)
Hadi, Aseel A.K.	IJAPLett 2(2)	Hasan, Ruqia A.	IJAP 16(4)
Haider, Adawiya J.	IJAP 4(1)	Hashem, Abbas K.	IJAP 14(3)
Haider, Adawiya J.	IJAP 4(2)	Hashim, Abdal Sattar K.	IJAP 11(1)
· •	` /		
Haider, Adawiya J.	IJAPLett 1(1)	Hassan, Suzan I.	IJAP 9(4)
Haider, Adawiya J.	IJAPLett 1(1)	Hassan, Suzan I.	IJAP 10(1)
Haider, Adawiya J.	IJAP 7(2)	Hattab, Farah A.	IJAP 11(2)
Haider, Adawiya J.	IJAP 10(3)	Hattab, Farah A.	IJAP 11(3)
Hajem, Khalil Í.	IJAP 4(2)	Hawy, Ryam E.	IJAP 11(2)
			٠,
Hama, Ibrahim K.	IJAPLett 2(1)	Hayakawa, Yasuhiro	IJAP 4(2)
Hamad, Bassma H.	IJAP 1(3)	Hikmet, Huda M.	IJAPLett 1(1)
Hamad, Bassma H.	IJAP 1(4)	Hirata, Akira	IJAP 4(2)
Hamadi, Oday A.	IJAP 1(1)	Hmeed, Sami R.	IJAP 14(3)
Hamadi, Oday A.	IJAP 4(3)	Hmood, Jassim K.	IJAP 5(2)
			` '
Hamadi, Oday A.	IJAPLett 1(1)	Hmood, Jassim K.	IJAP 7(4)
Hamadi, Oday A.	IJAPLett 1(2)	Hongwei, Liang	IJAP 9(1)
Hamadi, Oday A.	IJAPLett 1(2)	Hora, H.	IJAP 6(1)
Hamadi, Oday A.	IJAPLett 2(1)	Humady, Abdul-Jabar K.	IJAP 1(3)
· •	` '		IJAP 5(1)
Hamadi, Oday A.	IJAPLett 3(1)	Husain, Nasr N.	
Hammadi, Oday A.	IJAP 8(1)	Hussain, Kadhim H.	IJAP 4(1)
Hammadi, Oday A.	IJAP 10(1)	Hussain, Mukhtar	IJAP 12(1)
Hammadi, Oday A.	IJAP 10(2)	Hussain, Moath, N.	IJAP 6(1)
Hammadi, Oday A.	IJAP 12(2)	Hussein, Muhammad T.	IJAP 1(1)
	` ,		IJAP 7(4)
Hammadi, Oday A.	IJAP 12(3)	Hussen, Itab F.	IJAP 7(4)
Hammadi, Oday A.	IJAP 13(2)		
Hammadi, Oday A.	IJAP 13(2)	I	
Hammadi, Oday A.	IJAP 13(3)	Ibeshiyv, Genady	IJAP 8(1)
Hammadi, Oday A.	IJAP 14(4)	Ibeshiyv, Genady	IJAP 14(2)
			` '
Hammadi, Oday A.	IJAP 15(4)	Ibraheem, Faez M.	IJAP 4(1)
Hammadi, Oday A.	IJAP 16(1)	Ibrahem, Enas H.	IJAP 8(3)
Hammadi, Oday A.	IJAP 16(2)	Ibrahem, Enas H.	IJAP 8(4)
Hamam, M.	IJAP 7(1)	Ibrahem, Enas H.	IJAP 9(4)
Hamed, Esraa K.	IJAP 11(2)	Ibrahem, Mohammed A.	IJAP 4(4)
· · · · · · · · · · · · · · · · · · ·			
Hamed, Esraa K.	IJAP 11(3)	Ibrahim, Fuad T.	IJAP 13(3)
Hameed, Awham M.	IJAP 11(2)	Ibrahim, Fuad T.	IJAP 16(3)
Hameed, Hussain J.	IJAPLett 1(1)	Ibrahim, Fuad T.	IJAP 16(4)
Hameed, Hussain J.	IJAPLett 1(2)	Ibrahim, Tengku A.T.	IJAP 9(4)
Hameed, Mohammed A.	IJAP 12(2)	Ibrahim, Tengku A.T.	IJAP 10(1)
	* *		
Hameed, Mohammed A.	IJAP 12(4)	lmai, K.	IJAP 2(3)
Hameed, Mohammed A.	IJAP 14(1)	Imran, Tayyab	IJAP 11(3)
Hameed, Mohammed A.	IJAP 15(4)	Imran, Tayyab	IJAP 12(1)
Hameed, Mohammed A.	IJAP 16(3)	lp, Ezra	IJAP 3(1)
Hameed, Mohammed A.	IJAP 16(4)	Ismail, Munaf R.	IJAP 1(4)
•	` ,	Ismail, Raid A.W.	
Hameed, Raheem A.	IJAPLett 1(2)		IJAP 1(1)
Hameed, Widad A.	IJAP 6(3)	Ismail, Raid A.W.	IJAP 1(2)
Hammas, Hussain A.	IJAP 5(2)	Ismail, Raid A.W.	IJAP 1(2)
Hamoudi, Adel K.	IJAP 6(1)	Ismail, Raid A.W.	IJAP 1(3)
Hamoudi, Adel K.	IJAP 7(2)	Ismail, Raid A.W.	IJAP 1(4)
Hamoudi, Walid K.	IJAP 1(1)	Ismail, Raid A.W.	IJAP 2(1)
Hamoudi, Walid K.	IJAP 1(2)	Ismail, Raid A.W.	IJAP 9(4)
Hamoudi, Walid K.	IJAP 1(3)	Ismail, Raid A.W.	IJAP 10(2)
Hamoudi, Walid K.	IJAP 1(4)	Ismail, Raid A.W.	IJAP 10(3)
Hamoudi, Walid K.	IJAP 4(3)	,	(0)
	* * *	1	
Hamoudi, Walid K.	IJAP 6(1)	J	LIAD C(1)
Hamoudi, Walid K.	IJAP 7(2)	Jabar, Jenan T.	IJAP 2(1)
Hamoudi, Walid K.	IJAP 9(4)	Jabbar, Zahraa M.	IJAP 12(4)
Hamoudi, Walid K.	IJAP 9(4)	Jabber, Ahmed S.	IJAPLett 1(1)
Hamoudi, Walid K.	IJAP 10(1)	Jakovlev, Vladimir	IJAP 5(2)
Hamoudi, Walid K.	IJAP 10(3)	Jameel, Eman I.	IJAP 9(4)

	11AB 0/4)	14 1 4 01 1: 14	LIAD 0(0)
Jameel, Khaled S.	IJAP 8(1)	Khalaf, Shakir M.	IJAP 6(3)
Jameel, Khaled S.	IJAP 14(2)	Khalef, Wafaa K.	IJAP 9(3)
Jameel, Kasim M.	IJAP 12(1)	Khalef, Wafaa K.	IJAP 11(1)
Jandow, Nidhal N.	IJAP 10(3)	Khalef, Wafaa K.	IJAP 12(1)
Jasim, Ahmed A.	IJAP 14(3)	Khaleel, Khalaf I.	IJAP 8(4)
•		•	
Jasim, Ahmed M.	IJAPLett 1(1)	Khaleel, Khalaf I.	IJAP 9(3)
Jasim, Ahmed M.	IJAPLett 1(2)	Khamis, Raad A.	IJAP 4(1)
Jasim, Awatif S.	IJAP 8(4)	Khamis, Raad A.	IJAP 8(3)
Jasim, Awatif S.	IJAP 9(3)	Khanduri, Gagan	IJAP 16(1)
Jasim, Bilal K.	IJAP 12(1)	Khashan, Khawla S.	IJAPLett 1(1)
•		•	
Jasim, Jamal H.	IJAP 14(3)	Khayat, Hani G.	IJAP 5(1)
Jasim, Namir A.	IJAP 6(3)	Knudsen, James E.	IJAP 5(2)
Jasim, Saad M.	IJAPLett 1(2)	Kogama, T.	IJAP 1(4)
Jasim, Sahra S.	IJAPLett 2(2)	Koptelov, Anatoly A.	IJAP 7(4)
Jassem, Sahra S.	IJAPLett 1(2)	Korn, G.	IJAP 2(4)
Jassim, Ayad H.	IJAP 2(2)	Kourogi, M.	IJAP 2(3)
Jassim, Riyadh A.	IJAP 14(2)	Krausz, F.	IJAP 2(4)
Jiang, Mu Zhou	IJAP 14(4)	Kumagawa, Masashi	IJAP 4(2)
Jibrael, Fawwaz J.	IJAP 5(2)	Kumar, Anjani	IJAP 9(4)
Jibrael, Fawwaz J.	IJAP 6(2)	Kumar, Ashok	IJAP 1(3)
Jibrael, Fawwaz J.	IJAP 7(2)	Kumar, Ashok	IJAP 9(1)
	IJAP 9(1)		
Jiming, Bian		Kumar, Ashok	IJAP 9(4)
Jingchang, Sun	IJAP 9(1)	Kumar, Ashok	IJAP 11(2)
Jubair, S.I.	IJAP 7(1)	Kumar, Deepak	IJAP 9(1)
Judran, A.K.	IJAP 7(1)		
Jumaa, Sabah M.	IJAP 1(4)	L	
Jumaa, Sabah M.	IJAP 2(2)	Lafta, Sabri J.	IJAP 1(1)
•		Lang, Li W.	
Jumaa, Sabah M.	IJAP 4(4)	3 .	IJAP 6(3)
Jumaa, Sabah M.	IJAP 10(1)	Lansel, Steven	IJAP 6(3)
Jwad, Ahmed K.	IJAP 14(3)	Lau, Alan Pak Tao	IJAP 3(1)
		Lefort, L.	IJAP 2(4)
K		Lozovik, Yuri E.	IJAP 8(1)
Kabita, K.	IJAP 9(4)	Li, Cheng Zeng	IJAP 13(3)
Kabral, Mehradad	IJAP 8(1)	Li, Z.D.	IJAP 8(4)
Kabral, Mehradad	IJAP 14(2)	Lin, C.G.	IJAP 8(4)
Kadhem, Alaa B.	IJAP 1(3)	Lu, Y.J.	IJAP 8(4)
Kadhem, Alaa B.	IJAP 2(2)		
Kadhem, Dheyaa J.	IJAP 8(1)	M	
Kadhim, Ahmed J.	IJAP 14(2)	Ma, X.	IJAP 2(3)
Kadhim, Dheyaa J.	IJAP 14(1)	Mahdi Bashar S.	IJAP 10(3)
Kadhim, Firas J.	IJAP 10(1)	Mahdi, Dunia K.	IJAP 11(2)
Kadhim, Firas J.	IJAP 12(2)	Mahdi, Duraid F.	IJAP 11(2)
Kadhim, Firas J.	IJAP 12(3)	Mahdi, Rana O.	IJAPLett 2(2)
Kadhim, Firas J.	IJAP 12(4)	Mahdi, Tawfiq S.	IJAP 16(1)
Kadhim, Firas J.	IJAP 13(2)	Mahmood, Ali S.	IJAPLett 2(1)
Kadhim, Firas J.	IJAP 13(3)	Mahmood, Maher F.	IJAP 14(4)
Kadhim, Firas J.	IJAP 15(4)	Mahmood, Suhad A.	IJAP 6(3)
Kadhim, Firas J.	IJAP 16(1)	Maibam, J.	IJAP 9(4)
Kadhim, Firas J.	IJAP 16(3)	Majeed, Haider M.	IJAP 14(2)
Kadhim, Mohammed A.	LIAD 40/0)	Maiid Naara	IJAP 9(4)
Radillii, Mohammed A.	IJAP 10(2)	Majiu, Noora	10/A1 3(A)
	IJAP 10(2) IJAP 11(1)	Majid, Noora Makarov, Miroslav	
Kadhim, Mohammed A.	IJAP 11(1)	Makarov, Miroslav	IJAP 16(3)
Kadhim, Mohammed A. Kadhim, Suad M.	IJAP 11(1) IJAP 11(3)	Makarov, Miroslav Malik, Mutasim I.	IJAP 16(3) IJAP 6(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H.	IJAP 11(1) IJAP 11(3) IJAP 14(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A.	IJAP 16(3) IJAP 6(2) IJAP 6(1)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H.	IJAP 11(1) IJAP 11(3) IJAP 14(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A.	IJAP 16(3) IJAP 6(2) IJAP 6(1)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Khalil I.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S.	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Mohammed K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4) IJAP 10(1)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita Mehta, Neeraj	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4) IJAP 1(3)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Mohammed K. Khalaf, Mohammed K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4) IJAP 10(1) IJAP 10(4)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita Mehta, Neeraj Mehta, Neeraj	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4) IJAP 1(3) IJAP 9(1)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Khalil I. Khalaf, Mohammed K. Khalaf, Mohammed K. Khalaf, Mohammed K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4) IJAP 10(1) IJAP 10(4) IJAP 12(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita Mehta, Neeraj Meszáros, István	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4) IJAP 1(3) IJAP 9(1) IJAP 9(1) IJAPLett 2(1)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Khalil I. Khalaf, Mohammed K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4) IJAP 10(1) IJAP 10(4) IJAP 12(3) IJAP 13(2)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita Mehta, Neeraj Mehta, Neeraj Mészáros, István Meucci, Riccardo	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4) IJAP 1(3) IJAP 9(1) IJAP 9(1) IJAP 5(2)
Kadhim, Mohammed A. Kadhim, Suad M. Kadhum, Ali H. Kadhum, Rafid K. Kahn, Joseph M. Kako, Salim A. Kalimirov, Oleg M. Karim, Alia Kasim, Yaser H. Khalaf, Abdul-Aziz A. Khalaf, Khalil I. Khalaf, Mohammed K. Khalaf, Mohammed K. Khalaf, Mohammed K.	IJAP 11(1) IJAP 11(3) IJAP 14(3) IJAP 6(3) IJAP 3(1) IJAP 4(1) IJAP 2(1) IJAP 10(2) IJAP 14(3) IJAPLett 1(1) IJAP 4(4) IJAP 10(1) IJAP 10(4) IJAP 12(3)	Makarov, Miroslav Malik, Mutasim I. Malik, S.A. Malliaras, George G. Manterčk, George L. Mao, Samuel S. Mardshah, R.A. Mazahery, Ali Megazy, A.S. Mehdi, Mohammed S. Mehta, Charita Mehta, Neeraj Meszáros, István	IJAP 16(3) IJAP 6(2) IJAP 6(1) IJAP 4(2) IJAP 1(3) IJAP 3(4) IJAP 9(3) IJAP 8(3) IJAPLett 3(1) IJAP 5(2) IJAP 4(4) IJAP 1(3) IJAP 9(1) IJAP 9(1) IJAPLett 2(1)

Mijama, K.	IJAP 1(4)	Puech, K.	IJAP 2(4)
Mikhlif, Haitham M.	IJAP 1(1)		
Mikhlif, Haitham M.	IJAPLett 2(1)	Q	
Mikhlif, Haitham M.	IJAPLett 3(1)	Qazi, B.N.	IJAP 9(3)
Ming, Yang M.	IJAP 6(3)	_	
Mishjil, Khudheir A.	IJAPLett 1(1)	R	
Mohameed, Qamar Q.	IJAP 11(2)	Radi, Tarek M.	IJAP 14(3)
Mohammad, Ali J.	IJAP 4(1)	Raheem, Ehsan M.	IJAP 2(2)
Mohammad, Ali J.	IJAPLett 1(1)	Raheema, M.N.	IJAP 7(1)
Mohammad, M.R.	IJAP 10(3)	Raja, Waleed N.	IJAP 12(3)
Mohammed, Ghuson M.	IJAP 11(3)	Raja, Waleed N.	IJAP 12(4)
Mohammed, N.Q.	IJAP 9(4)	Rajab, Fatema H.	IJAP 9(1)
Mohammed, Fatin H.	IJAP 11(2)	Ramadhan, Amer A.	IJAp 16(1)
Mohammed, Ruaa A.	IJAP 12(4)	Raouf, Dayah N.	IJAP 1(1)
Mousa, Ali M.	IJAP 4(1)	Raouf, Dayah N.	IJAP 1(1)
Mousa, Ali M.	IJAP 4(3)	Raouf, Dayah N.	IJAP 1(2)
Mousa, Ali M.	IJAP 4(4)	Raouf, Dayah N.	IJAPLett 2(1)
Mousa, Ali M.	IJAPLett 1(1)	Raouf, Dayah N.	IJAP 10(2)
Mousa, Ali M.	IJAP 10(3)	Rasen, Fadhil A.	IJAP 4(2)
Mousa, Salam K.	IJAP 12(1)	Rasheed, Bassam G.	IJAP 1(1)
Mukhtar, Hussain	IJAP 11(3)	Rasheed, Bassam G.	IJAP 4(4)
			IJAPLett 1(1)
Murad, Muna S.	IJAP 10(2)	Rasheed, Bassam G.	` '
Musa, Abdul-Aziz O.	IJAP 11(1)	Rasheed, Fareed F.	IJAP 4(4)
Musa, Bushra H.	IJAP 11(1)	Rasheed, Rashed T.	IJAP 10(4)
Musa, Bushra H.	IJAP 11(3)	Rashid, Hayfa G.	IJAPLett 1(1)
Mtashar, Dhulfiqar S.	IJAP 15(4)	Rashid, Hayfa G.	IJAP 12(1)
		Redha, Basheera M.	IJAP 8(1)
N		Ridha, Basheera M.	IJAP 14(2)
Nachtigall, P.	IJAP 4(2)	Rivent, E.	IJAP 1(4)
Nachtigallová, D.	IJAP 4(2)	Riza Khan, P.A.	IJAP 6(1)
Nadtochenko, Vladimir	IJAP 8(1)	Romano, Elisabetta	IJAP 4(4)
Naher, A.K.	IJAP 7(1)		
Najeeb, Golan M.	IJAPLett 2(1)	S	
Naji, Noor I.	IJAP 6(2)	Sabah, Fayroz A.	IJAP 9(3)
Naji, Noor I.	IJAP 10(2)	Sabbar, Qasim A.	IJAPLett 1(2)
Naji, Noor I.	IJAP 10(3)	Sabri, Atheer A.	IJAP 6(2) `´
Naji, Noor E.	IJAP 16(4)	Sabri, Atheer A.	IJAP 7(2)
Narducci, Dario	IJAP 4(4)	Sadiq, Zainab S.	IJAP 11(2)
Nasher, Samir H.	IJAP 4(3)	Saini, G.S.S.	IJAP 4(4)
Nasif, Rafah A.	IJAP 11(1)	Sakagawa, T.	IJAP 1(4)
Nasif, Rafah A.	IJAP 11(3)	Salman, Amjd A.	IJAP 14(4)
Nasir, H.A.	IJAP 7(1)	Saleh, Mohammed A.	IJAP 12(3)
Nasser, Baraa K.	IJAP 15(4)	Saleh, Mohammed A.	IJAP 12(4)
Nasser, Ghazi Y.		Salem, A.M.	IJAP 7(1)
	IJAP 9(1)	•	
Nayak, N.	IJAP 2(3) IJAP 2(3)	Salih, Saad A.	IJAP 6(1)
Ndap, J.O.		Salih, Saad A.	IJAP 7(2)
Nibbering, E.T.J.	IJAP 2(4)	Salim, Sana R.	IJAP 5(2)
Ninkoveć, Jelena	IJAP 4(3)	Salim, Sana R.	IJAPLett 3(1)
		Sallomi, Adheed H.	IJAP 5(2)
0	1110 0 (0)	Sallomi, Adheed H.	IJAPLett 3(1)
Ohtsu, M.	IJAP 2(3)	Salman, Ghaed K.	IJAP 12(2)
Okano, Yasunori	IJAP 4(2)	Salman, Majed A.	IJAP 7(4)
Osman, F.	IJAP 6(1)	Salman, Odai N.	IJAP 13(3)
Ostad Shabani, Mohsen	IJAP 8(3)	Salman, Tariq S.	IJAP 6(3)
		Sanduk, Mohammad I.	IJAP 4(1)
Р		Sarkisov, Oleg M.	IJAP 8(1)
Page, R.H.	IJAP 2(3)	Sateaa, Shahad D.	IJAP 7(2)
Palomino, G. Turnes	IJAP 4(2)	Schaffers, K.I.	IJAP 2(3)
Panwar, Brishbhan	IJAP 16(1)	Selim, M.S.	IJAP 7(1)
Parshieva, Latia K.	IJAP 8(1)	Shafeq, Omar S.	IJAP 12(1)
Parshieva, Latia K.	IJAP 14(2)	Shakaty, Aseel A.	IJAP 11(3)
Patel, Shivaji	IJAP 8(1)	Shakir, M.M.	IJAP 9(3)
Patel, Shivaji	IJAP 14(2)	Shanchurov, Stanislaw	IJAP 5(2)
Perry, M.D.	IJAP 2(4)	Sharma, B.I.	IJAP 9(4)
Petrescu, Florian I.T.	IJAP 10(1)	Sharma, Sudhir K.	IJAP 11(2)
Petrescu, Relly V.V.	IJAP 10(1)	Shen, Yulong	IJAP 4(2)
Ponpon, Jean-Pierre	IJAP 4(3)	Shimizu, T.	IJAP 2(3)
. Japon, Journ Florio	(0)	J20, 1.	.5, 2(0)

IRAQI JOURNAL OF APPLIED PHYSICS IJAP, Vol. 16, No. 4, October-December 2020, pp. 37-42

Shukla, R.K. Shukur, Nagham, J.	IJAP 9(4) IJAPLett 3(1)	Vodesko, Patrick J.	IJAP 14(2)
Shwail, Naghain, o. Shwail, Safaa H. Sing, Ashok Ravindra Sing, Manu Kapur Singh, R.K.B. Sridhar, Hamsa Srivastava, Subodh Srivastava, Subodh Sterian, P.E. Sultan, Omar A.A. Svirko, Y.P.	IJAP 10(2) IJAP 13(2) IJAP 14(2) IJAP 9(4) IJAP 7(2) IJAP 8(4) IJAP 9(1) IJAP 1(1) IJAP 1(1) IJAP 2(4)	W Wagner, G.J. Wang, Wei Qiang Webb, P.A. Wei, Wu Widiyatmoko, B. Williams, Kirk L. Wissmiller, Kevin R. Wolf, E.	IJAP 2(3) IJAP 14(4) IJAP 6(1) IJAP 9(1) IJAP 2(3) IJAP 3(3) IJAP 5(2) IJAP 2(4)
T	LIA DI . ((0 (0)	Yadav, Sarish	IJAP 11(2)
Taha, Wessal A. Taleb, Abdulmahdi	IJAPLett 2(2) IJAP 5(2)	Yahya, Khaled Z. Yan, P.	IJAP 7(2) IJAP 8(4)
Taha, Rana M.	IJAP 9(3)	Yang, C.	IJAP 2(3)
Tang, Deli	IJAP 8(4)	Yang, Chang Li	IJAP 13(2)
Tariq, Sahar Z.	IJAP 10(4)	Yao, Qiuming	IJAP 6(3)
Tatham, Michael C.	IJAP 1(2)	Yee, Agnes Tan Swee	IJAP 4(3)
Teleb, N.H.	IJAP 7(1)	Yinglan, Sun	IJAP 9(1)
Tempea, G.	IJAP 2(4)	Yingmin, Luo	IJAP 9(1)
Thapa, R.K.	IJAP 9(4)	Yokoshvilly, Walter M.	IJAP 2(1)
Tillier, Jérémy	IJAP 14(4)	Younis, Younis Th.	IJAP 12(1)
Timoshkov, Alexander Tripathi, S.K.	IJAP 16(3) IJAP 4(4)	Yousif, Ban A. Youssef, G.M.A.	IJAP 11(3) IJAPLett 3(1)
Tsang, Mankel	IJAP 3(2)	Toussel, G.W.A.	IJAF Lett 3(1)
Turki, Reem H.	IJAP 16(3)	Z	
Turki, Reem H.	IJAP 16(4)	Zaerory, Tarek	IJAP 11(2)
Tverjanovich, A.	IJAPLett 3(1)	Zaher, Mohammad K.	IJAP 4(2)
•	` '	Zhao, Jie	IJAP 8(4)
U		Zhao, Lu Y.	IJAP 6(3)
Umemura, Shigeki	IJAP 4(2)	Zheng, X.J.	IJAP 5(1)
		Zhirov, Sergey G.	IJAP 7(4)
V		Zhou, Y.C.	IJAP 5(1)
Valskina, Sergey I.	IJAP 2(2)	Zhou, Z.L.	IJAP 8(4)
Vijay, Y.K.	IJAP 8(4)	Zhukov, L.	IJAP 7(1)
Vodesko, Patrick J.	IJAP 8(1)		

THE IRAQI JOURNAL OF APPLIED PHYSICS EDITORIAL BOARD

COPYRIGHT RELEASE FORM IRAQI JOURNAL OF APPLIED PHYSICS (IJAP)

We, the undersigned, the author/authors of the article titled
that is submitted to the Iraqi Journal of Applied Physics (IJAP) for publication, declare that we have neither taken part or full text from any published work by others, nor presented or published it elsewhere in any other journal. We also declare transferring copyrights and conduct of this article to the Iraqi Journal of Applied Physics (IJAP) after accepting it for publication.
The authors will keep the following rights: 1. Possession of the article such as patent rights. 2. Free of charge use of the article or part of it in any future work by the authors such as books and lecture notes after informing IJAP editorial board. 3. Republishing the article for any personal purposes of the authors after taking journal permission.
To be signed by all authors:
Signature:date:
Signature:date:
Signature:date:
Correspondence address:
Address:
Telephone:email:
Note: Complete and sign this form and mail it to the below address with your finally revised manuscript

The Iraqi Journal of Applied Physics

www.iraqiphysicsjournal.com
Email: info@iraqiphysicsjournal.com
Email: editor_ijap@yahoo.co.uk
Email: irq_appl_phys@yahoo.com

IRAQI JOURNAL OF APPLIED PHYSICS

Volume (16), Issue (4), October-December 2020

CONTENTS

About Iraqi Journal of Applied Physics (IJAP)	1
Instructions to Authors	2
Solving Laplace Equation for Numerical Treatment of Surface Potential Generated by Laser- Solid Interaction Noor E. Naji	3-11
58th Winter Nuclear Particle Physics Virtual Conference (WNPPC 2021) 9-12 February 2021	12
Preparation and Characterization of Anatase Titanium Dioxide Nanostructures as Smart and Self-Cleaned Surfaces Ruqia A. Hassan, Fuad T. Ibrahim	13-18
Simulation Study on Current Gain Improvement at High Collector Current Densities for CuO/TiO ₂ Heterostructure Transistors Ahmed S. Falah, Khalid R. Jasim	19-23
2021 International Conference on Compound Semiconductor Manufacturing Technology 24 th – 27 th May 2021, Orlando, Florida, U.S.A	24
Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique Mohammed A. Hameed, Saja H. Faisal, Reem H. Turki	25-30
IJAP Subject Index 2005-2020	31-36
IJAP Author Index 2005-2020	37-42
IJAP Copyright Release Form	43
Contents	44